yujia23 commited on
Commit
e7b6045
1 Parent(s): 26c9f9f

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +159 -0
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. added_tokens.json +5 -0
  5. checkpoint-1130/README.md +202 -0
  6. checkpoint-1130/adapter_config.json +34 -0
  7. checkpoint-1130/adapter_model.safetensors +3 -0
  8. checkpoint-1130/added_tokens.json +5 -0
  9. checkpoint-1130/merges.txt +0 -0
  10. checkpoint-1130/optimizer.pt +3 -0
  11. checkpoint-1130/rng_state_0.pth +3 -0
  12. checkpoint-1130/rng_state_1.pth +3 -0
  13. checkpoint-1130/scheduler.pt +3 -0
  14. checkpoint-1130/special_tokens_map.json +20 -0
  15. checkpoint-1130/tokenizer.json +0 -0
  16. checkpoint-1130/tokenizer_config.json +43 -0
  17. checkpoint-1130/trainer_state.json +0 -0
  18. checkpoint-1130/training_args.bin +3 -0
  19. checkpoint-1130/vocab.json +0 -0
  20. checkpoint-1695/README.md +202 -0
  21. checkpoint-1695/adapter_config.json +34 -0
  22. checkpoint-1695/adapter_model.safetensors +3 -0
  23. checkpoint-1695/added_tokens.json +5 -0
  24. checkpoint-1695/merges.txt +0 -0
  25. checkpoint-1695/optimizer.pt +3 -0
  26. checkpoint-1695/rng_state_0.pth +3 -0
  27. checkpoint-1695/rng_state_1.pth +3 -0
  28. checkpoint-1695/scheduler.pt +3 -0
  29. checkpoint-1695/special_tokens_map.json +20 -0
  30. checkpoint-1695/tokenizer.json +0 -0
  31. checkpoint-1695/tokenizer_config.json +43 -0
  32. checkpoint-1695/trainer_state.json +0 -0
  33. checkpoint-1695/training_args.bin +3 -0
  34. checkpoint-1695/vocab.json +0 -0
  35. checkpoint-565/README.md +202 -0
  36. checkpoint-565/adapter_config.json +34 -0
  37. checkpoint-565/adapter_model.safetensors +3 -0
  38. checkpoint-565/added_tokens.json +5 -0
  39. checkpoint-565/merges.txt +0 -0
  40. checkpoint-565/optimizer.pt +3 -0
  41. checkpoint-565/rng_state_0.pth +3 -0
  42. checkpoint-565/rng_state_1.pth +3 -0
  43. checkpoint-565/scheduler.pt +3 -0
  44. checkpoint-565/special_tokens_map.json +20 -0
  45. checkpoint-565/tokenizer.json +0 -0
  46. checkpoint-565/tokenizer_config.json +43 -0
  47. checkpoint-565/trainer_state.json +4008 -0
  48. checkpoint-565/training_args.bin +3 -0
  49. checkpoint-565/vocab.json +0 -0
  50. config.json +42 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: Qwen/Qwen1.5-7B
7
+ model-index:
8
+ - name: home/yujia/home/CN_Hateful/trained_models/qwen/toxi/1e-5/
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # base_model: Qwen/Qwen-7B
21
+ base_model: Qwen/Qwen1.5-7B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: true
28
+ load_in_4bit: false
29
+ strict: false
30
+
31
+ datasets:
32
+ # - path: mhenrichsen/alpaca_2k_test
33
+ # - path: /home/yujia/home/CN_Hateful/train_toxiCN_cn.json
34
+ - path: /home/yujia/home/CN_Hateful/train_toxiCN.json
35
+ ds_type: json
36
+ type: alpaca
37
+ dataset_prepared_path:
38
+ val_set_size: 0.05
39
+ # output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/CN/toxi/3e-5/
40
+ output_dir: /home/yujia/home/CN_Hateful/trained_models/qwen/toxi/1e-5/
41
+
42
+
43
+ sequence_len: 256 # supports up to 8192
44
+ sample_packing: false
45
+ pad_to_sequence_len:
46
+
47
+ adapter: lora
48
+ lora_model_dir:
49
+ lora_r: 32
50
+ lora_alpha: 16
51
+ lora_dropout: 0.05
52
+ lora_target_linear: true
53
+ lora_fan_in_fan_out:
54
+
55
+ wandb_project:
56
+ wandb_entity:
57
+ wandb_watch:
58
+ wandb_name:
59
+ wandb_log_model:
60
+
61
+ gradient_accumulation_steps: 4
62
+ micro_batch_size: 2
63
+ num_epochs: 3
64
+ optimizer: adamw_bnb_8bit
65
+ lr_scheduler: cosine
66
+ learning_rate: 0.00001
67
+
68
+ train_on_inputs: false
69
+ group_by_length: false
70
+ bf16: auto
71
+ fp16:
72
+ tf32: false
73
+
74
+ gradient_checkpointing: false
75
+ early_stopping_patience:
76
+ resume_from_checkpoint:
77
+ local_rank:
78
+ logging_steps: 1
79
+ xformers_attention:
80
+ flash_attention:
81
+
82
+ warmup_steps: 10
83
+ evals_per_epoch: 4
84
+ eval_table_size:
85
+ eval_max_new_tokens: 20
86
+ saves_per_epoch: 1
87
+ debug:
88
+ deepspeed:
89
+ weight_decay: 0.0
90
+ fsdp:
91
+ fsdp_config:
92
+ special_tokens:
93
+
94
+ ```
95
+
96
+ </details><br>
97
+
98
+ # home/yujia/home/CN_Hateful/trained_models/qwen/toxi/1e-5/
99
+
100
+ This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset.
101
+ It achieves the following results on the evaluation set:
102
+ - Loss: 0.0540
103
+
104
+ ## Model description
105
+
106
+ More information needed
107
+
108
+ ## Intended uses & limitations
109
+
110
+ More information needed
111
+
112
+ ## Training and evaluation data
113
+
114
+ More information needed
115
+
116
+ ## Training procedure
117
+
118
+ ### Training hyperparameters
119
+
120
+ The following hyperparameters were used during training:
121
+ - learning_rate: 1e-05
122
+ - train_batch_size: 2
123
+ - eval_batch_size: 2
124
+ - seed: 42
125
+ - distributed_type: multi-GPU
126
+ - num_devices: 2
127
+ - gradient_accumulation_steps: 4
128
+ - total_train_batch_size: 16
129
+ - total_eval_batch_size: 4
130
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
131
+ - lr_scheduler_type: cosine
132
+ - lr_scheduler_warmup_steps: 10
133
+ - num_epochs: 3
134
+
135
+ ### Training results
136
+
137
+ | Training Loss | Epoch | Step | Validation Loss |
138
+ |:-------------:|:-----:|:----:|:---------------:|
139
+ | 3.4697 | 0.0 | 1 | 3.5475 |
140
+ | 0.0881 | 0.25 | 142 | 0.0819 |
141
+ | 0.1131 | 0.5 | 284 | 0.0763 |
142
+ | 0.0538 | 0.75 | 426 | 0.0732 |
143
+ | 0.0425 | 1.0 | 568 | 0.0656 |
144
+ | 0.0866 | 1.26 | 710 | 0.0582 |
145
+ | 0.0705 | 1.51 | 852 | 0.0593 |
146
+ | 0.0848 | 1.76 | 994 | 0.0562 |
147
+ | 0.0631 | 2.01 | 1136 | 0.0552 |
148
+ | 0.0299 | 2.26 | 1278 | 0.0551 |
149
+ | 0.0494 | 2.51 | 1420 | 0.0545 |
150
+ | 0.0417 | 2.76 | 1562 | 0.0540 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.10.0
156
+ - Transformers 4.40.0.dev0
157
+ - Pytorch 2.2.1+cu121
158
+ - Datasets 2.18.0
159
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c4f1dfe64a64e487f2cc8ec6cec5df1f706187bbf9e0421a6c3c72e2647407d
3
+ size 319977674
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1130/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1130/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2169609e4e111e205423af6669bcf745f2d4ffb7fe04d98fe4c9b494d80ed181
3
+ size 319876032
checkpoint-1130/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1130/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0e0675f0ab9875f1d79a804457d8974c62eea898d5703d28d64c9ab05744fbf
3
+ size 160736532
checkpoint-1130/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b5ce99929bf679c66efd3571d6d16ec2bc09d695d01903fcacc74246e288546
3
+ size 14512
checkpoint-1130/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87959f9259619b31ece50de4d6f6e1852b421537d8bf5f40923f2b9835361944
3
+ size 14512
checkpoint-1130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e62998afaa8578d5258681d029fbfb3a81f919238169575bd2ab994d0eec64b3
3
+ size 1064
checkpoint-1130/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1130/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1130/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1130/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2667f02973c48c9daa1abbdc506826bb40abce66f6990081fb40359affcf7486
3
+ size 5752
checkpoint-1130/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-1695/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-1695/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e0f3e305fe591b78c617c06319c2ef07c876302a05b6af2df8f349ca4803106
3
+ size 319876032
checkpoint-1695/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-1695/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4aa4589166256b5978ed67bf82a78d6c49a8b02bade043cc00530243a007c003
3
+ size 160736532
checkpoint-1695/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3be619f0408a46b7c595a0e16467ed349083b4f5fc49d2bda7b06933a47f2d79
3
+ size 14512
checkpoint-1695/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b912b56538b0daf0219944e37db6b66e8b297d0c8462672d5a4f11b2365846f0
3
+ size 14512
checkpoint-1695/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd718d8885c7b195217779b1c1603102771881de6f058bded44d4708de1787e5
3
+ size 1064
checkpoint-1695/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-1695/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-1695/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1695/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2667f02973c48c9daa1abbdc506826bb40abce66f6990081fb40359affcf7486
3
+ size 5752
checkpoint-1695/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen1.5-7B
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-565/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen1.5-7B",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-565/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edcdb94705d8a049cc8f634d50e739abdd88ba64f53a8f51aecaa8ade2ac167
3
+ size 319876032
checkpoint-565/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
checkpoint-565/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c91cc2cdf808e6b860d36ebc8569a9885b2335b464d222847b9b2de70589d44e
3
+ size 160736532
checkpoint-565/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6ed7c1ca047ccc61dec57205e4e352265f27f08faafcef79a62d8c8620de4e3
3
+ size 14512
checkpoint-565/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a120d0d1b40b3da51cdbdb6991575094a50cabc516b462c83d578e06a5a986
3
+ size 14512
checkpoint-565/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7d15de12a469c7a06ad3c6f3a9cd00dc4668104e471506fe0f4503bf26a8ad1
3
+ size 1064
checkpoint-565/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
checkpoint-565/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-565/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "model_max_length": 32768,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
checkpoint-565/trainer_state.json ADDED
@@ -0,0 +1,4008 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9995577178239717,
5
+ "eval_steps": 142,
6
+ "global_step": 565,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 5.349672317504883,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 3.4697,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 3.547457695007324,
21
+ "eval_runtime": 14.4843,
22
+ "eval_samples_per_second": 32.863,
23
+ "eval_steps_per_second": 8.216,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0,
28
+ "grad_norm": 5.466770648956299,
29
+ "learning_rate": 2.0000000000000003e-06,
30
+ "loss": 3.4361,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 5.768375873565674,
36
+ "learning_rate": 3e-06,
37
+ "loss": 3.5871,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 5.6878485679626465,
43
+ "learning_rate": 4.000000000000001e-06,
44
+ "loss": 3.4894,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 5.205628871917725,
50
+ "learning_rate": 5e-06,
51
+ "loss": 3.501,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.01,
56
+ "grad_norm": 5.880322456359863,
57
+ "learning_rate": 6e-06,
58
+ "loss": 3.5771,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.01,
63
+ "grad_norm": 5.782011032104492,
64
+ "learning_rate": 7e-06,
65
+ "loss": 3.5119,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.01,
70
+ "grad_norm": 5.285853385925293,
71
+ "learning_rate": 8.000000000000001e-06,
72
+ "loss": 3.4089,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.02,
77
+ "grad_norm": 5.527816295623779,
78
+ "learning_rate": 9e-06,
79
+ "loss": 3.4341,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "grad_norm": 5.505781650543213,
85
+ "learning_rate": 1e-05,
86
+ "loss": 3.4175,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.02,
91
+ "grad_norm": 5.26746940612793,
92
+ "learning_rate": 9.999991309598975e-06,
93
+ "loss": 3.3163,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.02,
98
+ "grad_norm": 5.086071968078613,
99
+ "learning_rate": 9.999965238426104e-06,
100
+ "loss": 3.274,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.02,
105
+ "grad_norm": 5.271662712097168,
106
+ "learning_rate": 9.999921786572015e-06,
107
+ "loss": 3.2964,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.02,
112
+ "grad_norm": 4.7532830238342285,
113
+ "learning_rate": 9.999860954187756e-06,
114
+ "loss": 3.1292,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.03,
119
+ "grad_norm": 4.79344367980957,
120
+ "learning_rate": 9.99978274148479e-06,
121
+ "loss": 3.0481,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "grad_norm": 4.707954406738281,
127
+ "learning_rate": 9.999687148734996e-06,
128
+ "loss": 2.9757,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.03,
133
+ "grad_norm": 4.709782600402832,
134
+ "learning_rate": 9.999574176270667e-06,
135
+ "loss": 2.8673,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.03,
140
+ "grad_norm": 4.751430988311768,
141
+ "learning_rate": 9.999443824484519e-06,
142
+ "loss": 2.8341,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.03,
147
+ "grad_norm": 4.603825092315674,
148
+ "learning_rate": 9.999296093829672e-06,
149
+ "loss": 2.6421,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.04,
154
+ "grad_norm": 4.514200210571289,
155
+ "learning_rate": 9.999130984819662e-06,
156
+ "loss": 2.5699,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.04,
161
+ "grad_norm": 4.427622318267822,
162
+ "learning_rate": 9.998948498028435e-06,
163
+ "loss": 2.434,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.04,
168
+ "grad_norm": 4.507719993591309,
169
+ "learning_rate": 9.998748634090344e-06,
170
+ "loss": 2.3301,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.04,
175
+ "grad_norm": 4.355949878692627,
176
+ "learning_rate": 9.998531393700149e-06,
177
+ "loss": 2.0848,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.04,
182
+ "grad_norm": 4.219519138336182,
183
+ "learning_rate": 9.99829677761301e-06,
184
+ "loss": 1.9115,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.04,
189
+ "grad_norm": 4.065847873687744,
190
+ "learning_rate": 9.998044786644492e-06,
191
+ "loss": 1.7682,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.05,
196
+ "grad_norm": 3.7316126823425293,
197
+ "learning_rate": 9.997775421670558e-06,
198
+ "loss": 1.6426,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.05,
203
+ "grad_norm": 3.5228142738342285,
204
+ "learning_rate": 9.997488683627558e-06,
205
+ "loss": 1.5855,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.05,
210
+ "grad_norm": 3.2372498512268066,
211
+ "learning_rate": 9.997184573512245e-06,
212
+ "loss": 1.4059,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.05,
217
+ "grad_norm": 3.072031259536743,
218
+ "learning_rate": 9.996863092381753e-06,
219
+ "loss": 1.2633,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.05,
224
+ "grad_norm": 2.941805124282837,
225
+ "learning_rate": 9.9965242413536e-06,
226
+ "loss": 1.1709,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.05,
231
+ "grad_norm": 2.8302178382873535,
232
+ "learning_rate": 9.99616802160569e-06,
233
+ "loss": 1.0615,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.06,
238
+ "grad_norm": 2.7408287525177,
239
+ "learning_rate": 9.995794434376297e-06,
240
+ "loss": 1.0031,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.06,
245
+ "grad_norm": 2.6635422706604004,
246
+ "learning_rate": 9.995403480964072e-06,
247
+ "loss": 0.9273,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.06,
252
+ "grad_norm": 2.538907766342163,
253
+ "learning_rate": 9.994995162728029e-06,
254
+ "loss": 0.8141,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.06,
259
+ "grad_norm": 2.457651138305664,
260
+ "learning_rate": 9.994569481087552e-06,
261
+ "loss": 0.7208,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.06,
266
+ "grad_norm": 2.383510112762451,
267
+ "learning_rate": 9.994126437522376e-06,
268
+ "loss": 0.6763,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.07,
273
+ "grad_norm": 2.170029401779175,
274
+ "learning_rate": 9.99366603357259e-06,
275
+ "loss": 0.6163,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.07,
280
+ "grad_norm": 2.0166823863983154,
281
+ "learning_rate": 9.993188270838636e-06,
282
+ "loss": 0.5146,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.07,
287
+ "grad_norm": 1.9549278020858765,
288
+ "learning_rate": 9.992693150981293e-06,
289
+ "loss": 0.4851,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.07,
294
+ "grad_norm": 1.7454789876937866,
295
+ "learning_rate": 9.992180675721671e-06,
296
+ "loss": 0.4015,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.07,
301
+ "grad_norm": 1.5932520627975464,
302
+ "learning_rate": 9.991650846841226e-06,
303
+ "loss": 0.3704,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.07,
308
+ "grad_norm": 1.4394928216934204,
309
+ "learning_rate": 9.991103666181721e-06,
310
+ "loss": 0.3194,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.08,
315
+ "grad_norm": 1.2608178853988647,
316
+ "learning_rate": 9.990539135645246e-06,
317
+ "loss": 0.2621,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.08,
322
+ "grad_norm": 1.0825426578521729,
323
+ "learning_rate": 9.989957257194199e-06,
324
+ "loss": 0.2489,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.08,
329
+ "grad_norm": 1.0383331775665283,
330
+ "learning_rate": 9.989358032851283e-06,
331
+ "loss": 0.249,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.08,
336
+ "grad_norm": 0.7754441499710083,
337
+ "learning_rate": 9.9887414646995e-06,
338
+ "loss": 0.162,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.08,
343
+ "grad_norm": 0.7348763942718506,
344
+ "learning_rate": 9.988107554882138e-06,
345
+ "loss": 0.1713,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.08,
350
+ "grad_norm": 0.5076927542686462,
351
+ "learning_rate": 9.987456305602769e-06,
352
+ "loss": 0.1438,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.09,
357
+ "grad_norm": 0.5017581582069397,
358
+ "learning_rate": 9.986787719125241e-06,
359
+ "loss": 0.1386,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.09,
364
+ "grad_norm": 0.42143169045448303,
365
+ "learning_rate": 9.986101797773667e-06,
366
+ "loss": 0.138,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.09,
371
+ "grad_norm": 0.2827802896499634,
372
+ "learning_rate": 9.985398543932421e-06,
373
+ "loss": 0.1165,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.09,
378
+ "grad_norm": 0.33519247174263,
379
+ "learning_rate": 9.984677960046123e-06,
380
+ "loss": 0.119,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.09,
385
+ "grad_norm": 0.2341219186782837,
386
+ "learning_rate": 9.983940048619641e-06,
387
+ "loss": 0.0748,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.1,
392
+ "grad_norm": 0.20707747340202332,
393
+ "learning_rate": 9.983184812218071e-06,
394
+ "loss": 0.0949,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.1,
399
+ "grad_norm": 0.3519020974636078,
400
+ "learning_rate": 9.98241225346674e-06,
401
+ "loss": 0.0964,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.1,
406
+ "grad_norm": 0.2268177717924118,
407
+ "learning_rate": 9.981622375051183e-06,
408
+ "loss": 0.0771,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.1,
413
+ "grad_norm": 0.16427360475063324,
414
+ "learning_rate": 9.980815179717144e-06,
415
+ "loss": 0.08,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.1,
420
+ "grad_norm": 0.3412397503852844,
421
+ "learning_rate": 9.979990670270565e-06,
422
+ "loss": 0.085,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.1,
427
+ "grad_norm": 0.13405166566371918,
428
+ "learning_rate": 9.979148849577574e-06,
429
+ "loss": 0.0852,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.11,
434
+ "grad_norm": 0.23308596014976501,
435
+ "learning_rate": 9.978289720564471e-06,
436
+ "loss": 0.0895,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.11,
441
+ "grad_norm": 0.20687691867351532,
442
+ "learning_rate": 9.97741328621773e-06,
443
+ "loss": 0.0875,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.11,
448
+ "grad_norm": 0.14851821959018707,
449
+ "learning_rate": 9.976519549583974e-06,
450
+ "loss": 0.0898,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.11,
455
+ "grad_norm": 0.31722521781921387,
456
+ "learning_rate": 9.975608513769977e-06,
457
+ "loss": 0.0902,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.11,
462
+ "grad_norm": 0.13900260627269745,
463
+ "learning_rate": 9.974680181942645e-06,
464
+ "loss": 0.0987,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.11,
469
+ "grad_norm": 0.21426311135292053,
470
+ "learning_rate": 9.97373455732901e-06,
471
+ "loss": 0.0765,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.12,
476
+ "grad_norm": 0.18942435085773468,
477
+ "learning_rate": 9.972771643216213e-06,
478
+ "loss": 0.092,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.12,
483
+ "grad_norm": 0.15527579188346863,
484
+ "learning_rate": 9.971791442951498e-06,
485
+ "loss": 0.0667,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.12,
490
+ "grad_norm": 0.2748473286628723,
491
+ "learning_rate": 9.970793959942197e-06,
492
+ "loss": 0.0905,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.12,
497
+ "grad_norm": 0.2710763216018677,
498
+ "learning_rate": 9.969779197655726e-06,
499
+ "loss": 0.0767,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.12,
504
+ "grad_norm": 0.19998699426651,
505
+ "learning_rate": 9.968747159619556e-06,
506
+ "loss": 0.0836,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.13,
511
+ "grad_norm": 0.5467928051948547,
512
+ "learning_rate": 9.96769784942122e-06,
513
+ "loss": 0.1069,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.13,
518
+ "grad_norm": 0.1530974954366684,
519
+ "learning_rate": 9.966631270708288e-06,
520
+ "loss": 0.0867,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.13,
525
+ "grad_norm": 0.2446594089269638,
526
+ "learning_rate": 9.965547427188358e-06,
527
+ "loss": 0.0771,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.13,
532
+ "grad_norm": 0.14469081163406372,
533
+ "learning_rate": 9.964446322629044e-06,
534
+ "loss": 0.0892,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.13,
539
+ "grad_norm": 0.2065022885799408,
540
+ "learning_rate": 9.963327960857962e-06,
541
+ "loss": 0.0729,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.13,
546
+ "grad_norm": 0.27265021204948425,
547
+ "learning_rate": 9.962192345762717e-06,
548
+ "loss": 0.0684,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.14,
553
+ "grad_norm": 0.3528543710708618,
554
+ "learning_rate": 9.961039481290888e-06,
555
+ "loss": 0.0656,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.14,
560
+ "grad_norm": 0.14887100458145142,
561
+ "learning_rate": 9.959869371450022e-06,
562
+ "loss": 0.0794,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.14,
567
+ "grad_norm": 0.24467024207115173,
568
+ "learning_rate": 9.958682020307602e-06,
569
+ "loss": 0.0749,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.14,
574
+ "grad_norm": 0.4109407961368561,
575
+ "learning_rate": 9.957477431991053e-06,
576
+ "loss": 0.1062,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.14,
581
+ "grad_norm": 0.20120254158973694,
582
+ "learning_rate": 9.95625561068772e-06,
583
+ "loss": 0.101,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.15,
588
+ "grad_norm": 0.30039364099502563,
589
+ "learning_rate": 9.955016560644847e-06,
590
+ "loss": 0.1015,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.15,
595
+ "grad_norm": 0.3657380938529968,
596
+ "learning_rate": 9.953760286169571e-06,
597
+ "loss": 0.1124,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.15,
602
+ "grad_norm": 0.3613692820072174,
603
+ "learning_rate": 9.952486791628905e-06,
604
+ "loss": 0.0836,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.15,
609
+ "grad_norm": 0.3250538110733032,
610
+ "learning_rate": 9.95119608144972e-06,
611
+ "loss": 0.0753,
612
+ "step": 85
613
+ },
614
+ {
615
+ "epoch": 0.15,
616
+ "grad_norm": 0.21736566722393036,
617
+ "learning_rate": 9.94988816011873e-06,
618
+ "loss": 0.075,
619
+ "step": 86
620
+ },
621
+ {
622
+ "epoch": 0.15,
623
+ "grad_norm": 0.8842391967773438,
624
+ "learning_rate": 9.948563032182482e-06,
625
+ "loss": 0.1067,
626
+ "step": 87
627
+ },
628
+ {
629
+ "epoch": 0.16,
630
+ "grad_norm": 0.2460835725069046,
631
+ "learning_rate": 9.947220702247329e-06,
632
+ "loss": 0.0832,
633
+ "step": 88
634
+ },
635
+ {
636
+ "epoch": 0.16,
637
+ "grad_norm": 0.5178576707839966,
638
+ "learning_rate": 9.94586117497943e-06,
639
+ "loss": 0.1007,
640
+ "step": 89
641
+ },
642
+ {
643
+ "epoch": 0.16,
644
+ "grad_norm": 0.19302992522716522,
645
+ "learning_rate": 9.944484455104716e-06,
646
+ "loss": 0.0705,
647
+ "step": 90
648
+ },
649
+ {
650
+ "epoch": 0.16,
651
+ "grad_norm": 0.5060548186302185,
652
+ "learning_rate": 9.943090547408888e-06,
653
+ "loss": 0.1216,
654
+ "step": 91
655
+ },
656
+ {
657
+ "epoch": 0.16,
658
+ "grad_norm": 0.3466648757457733,
659
+ "learning_rate": 9.941679456737395e-06,
660
+ "loss": 0.0938,
661
+ "step": 92
662
+ },
663
+ {
664
+ "epoch": 0.16,
665
+ "grad_norm": 0.22704587876796722,
666
+ "learning_rate": 9.940251187995412e-06,
667
+ "loss": 0.0803,
668
+ "step": 93
669
+ },
670
+ {
671
+ "epoch": 0.17,
672
+ "grad_norm": 0.25966060161590576,
673
+ "learning_rate": 9.938805746147827e-06,
674
+ "loss": 0.0966,
675
+ "step": 94
676
+ },
677
+ {
678
+ "epoch": 0.17,
679
+ "grad_norm": 0.20877382159233093,
680
+ "learning_rate": 9.937343136219234e-06,
681
+ "loss": 0.0667,
682
+ "step": 95
683
+ },
684
+ {
685
+ "epoch": 0.17,
686
+ "grad_norm": 0.1972026228904724,
687
+ "learning_rate": 9.935863363293896e-06,
688
+ "loss": 0.0642,
689
+ "step": 96
690
+ },
691
+ {
692
+ "epoch": 0.17,
693
+ "grad_norm": 0.21666616201400757,
694
+ "learning_rate": 9.934366432515741e-06,
695
+ "loss": 0.0943,
696
+ "step": 97
697
+ },
698
+ {
699
+ "epoch": 0.17,
700
+ "grad_norm": 0.3361506760120392,
701
+ "learning_rate": 9.932852349088342e-06,
702
+ "loss": 0.0797,
703
+ "step": 98
704
+ },
705
+ {
706
+ "epoch": 0.18,
707
+ "grad_norm": 0.3094469904899597,
708
+ "learning_rate": 9.931321118274897e-06,
709
+ "loss": 0.0762,
710
+ "step": 99
711
+ },
712
+ {
713
+ "epoch": 0.18,
714
+ "grad_norm": 0.33961156010627747,
715
+ "learning_rate": 9.929772745398207e-06,
716
+ "loss": 0.0744,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.18,
721
+ "grad_norm": 0.3448229730129242,
722
+ "learning_rate": 9.928207235840664e-06,
723
+ "loss": 0.0562,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.18,
728
+ "grad_norm": 0.2657065689563751,
729
+ "learning_rate": 9.926624595044235e-06,
730
+ "loss": 0.0922,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.18,
735
+ "grad_norm": 0.2084828019142151,
736
+ "learning_rate": 9.925024828510429e-06,
737
+ "loss": 0.0616,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.18,
742
+ "grad_norm": 0.342433899641037,
743
+ "learning_rate": 9.92340794180029e-06,
744
+ "loss": 0.0827,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.19,
749
+ "grad_norm": 0.21574071049690247,
750
+ "learning_rate": 9.921773940534382e-06,
751
+ "loss": 0.0593,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.19,
756
+ "grad_norm": 0.15846671164035797,
757
+ "learning_rate": 9.920122830392748e-06,
758
+ "loss": 0.0732,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.19,
763
+ "grad_norm": 0.2687283456325531,
764
+ "learning_rate": 9.91845461711492e-06,
765
+ "loss": 0.0699,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.19,
770
+ "grad_norm": 0.18184144794940948,
771
+ "learning_rate": 9.916769306499866e-06,
772
+ "loss": 0.0632,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.19,
777
+ "grad_norm": 0.21744874119758606,
778
+ "learning_rate": 9.915066904406e-06,
779
+ "loss": 0.0805,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.19,
784
+ "grad_norm": 0.3575034737586975,
785
+ "learning_rate": 9.913347416751148e-06,
786
+ "loss": 0.0819,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.2,
791
+ "grad_norm": 0.23368307948112488,
792
+ "learning_rate": 9.91161084951252e-06,
793
+ "loss": 0.0576,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.2,
798
+ "grad_norm": 0.4599943161010742,
799
+ "learning_rate": 9.909857208726705e-06,
800
+ "loss": 0.0867,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.2,
805
+ "grad_norm": 0.26656806468963623,
806
+ "learning_rate": 9.908086500489638e-06,
807
+ "loss": 0.0586,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.2,
812
+ "grad_norm": 0.5311251282691956,
813
+ "learning_rate": 9.906298730956585e-06,
814
+ "loss": 0.102,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.2,
819
+ "grad_norm": 0.3186182677745819,
820
+ "learning_rate": 9.904493906342124e-06,
821
+ "loss": 0.0743,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.21,
826
+ "grad_norm": 0.20787174999713898,
827
+ "learning_rate": 9.902672032920106e-06,
828
+ "loss": 0.0536,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.21,
833
+ "grad_norm": 0.18734194338321686,
834
+ "learning_rate": 9.900833117023665e-06,
835
+ "loss": 0.06,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.21,
840
+ "grad_norm": 0.46386289596557617,
841
+ "learning_rate": 9.898977165045161e-06,
842
+ "loss": 0.0861,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.21,
847
+ "grad_norm": 0.2560313940048218,
848
+ "learning_rate": 9.897104183436184e-06,
849
+ "loss": 0.0574,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.21,
854
+ "grad_norm": 0.22062335908412933,
855
+ "learning_rate": 9.895214178707516e-06,
856
+ "loss": 0.0631,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.21,
861
+ "grad_norm": 0.2438971847295761,
862
+ "learning_rate": 9.89330715742912e-06,
863
+ "loss": 0.0906,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.22,
868
+ "grad_norm": 0.17582635581493378,
869
+ "learning_rate": 9.891383126230105e-06,
870
+ "loss": 0.0507,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.22,
875
+ "grad_norm": 0.2775309979915619,
876
+ "learning_rate": 9.889442091798712e-06,
877
+ "loss": 0.0741,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.22,
882
+ "grad_norm": 0.18693320453166962,
883
+ "learning_rate": 9.887484060882292e-06,
884
+ "loss": 0.0624,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.22,
889
+ "grad_norm": 0.5480987429618835,
890
+ "learning_rate": 9.885509040287267e-06,
891
+ "loss": 0.1104,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.22,
896
+ "grad_norm": 0.25776028633117676,
897
+ "learning_rate": 9.883517036879133e-06,
898
+ "loss": 0.0876,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.22,
903
+ "grad_norm": 0.6148080825805664,
904
+ "learning_rate": 9.881508057582411e-06,
905
+ "loss": 0.0678,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.23,
910
+ "grad_norm": 0.8079890608787537,
911
+ "learning_rate": 9.879482109380634e-06,
912
+ "loss": 0.0801,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.23,
917
+ "grad_norm": 0.22970955073833466,
918
+ "learning_rate": 9.877439199316324e-06,
919
+ "loss": 0.0662,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.23,
924
+ "grad_norm": 0.4607698917388916,
925
+ "learning_rate": 9.875379334490962e-06,
926
+ "loss": 0.0863,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.23,
931
+ "grad_norm": 0.4692334532737732,
932
+ "learning_rate": 9.873302522064972e-06,
933
+ "loss": 0.0968,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.23,
938
+ "grad_norm": 0.8688197135925293,
939
+ "learning_rate": 9.871208769257686e-06,
940
+ "loss": 0.0963,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.24,
945
+ "grad_norm": 0.2747116982936859,
946
+ "learning_rate": 9.869098083347323e-06,
947
+ "loss": 0.0801,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.24,
952
+ "grad_norm": 0.5444130897521973,
953
+ "learning_rate": 9.866970471670968e-06,
954
+ "loss": 0.0965,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.24,
959
+ "grad_norm": 0.303763210773468,
960
+ "learning_rate": 9.864825941624538e-06,
961
+ "loss": 0.0727,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.24,
966
+ "grad_norm": 0.16060137748718262,
967
+ "learning_rate": 9.862664500662763e-06,
968
+ "loss": 0.0468,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.24,
973
+ "grad_norm": 0.22011107206344604,
974
+ "learning_rate": 9.860486156299164e-06,
975
+ "loss": 0.0832,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.24,
980
+ "grad_norm": 0.38508448004722595,
981
+ "learning_rate": 9.85829091610601e-06,
982
+ "loss": 0.0947,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.25,
987
+ "grad_norm": 0.2385941594839096,
988
+ "learning_rate": 9.856078787714309e-06,
989
+ "loss": 0.0676,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.25,
994
+ "grad_norm": 0.15575379133224487,
995
+ "learning_rate": 9.853849778813777e-06,
996
+ "loss": 0.0833,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.25,
1001
+ "grad_norm": 0.23725704848766327,
1002
+ "learning_rate": 9.851603897152804e-06,
1003
+ "loss": 0.0807,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.25,
1008
+ "grad_norm": 0.20930880308151245,
1009
+ "learning_rate": 9.849341150538434e-06,
1010
+ "loss": 0.0881,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.25,
1015
+ "eval_loss": 0.08187390118837357,
1016
+ "eval_runtime": 14.7383,
1017
+ "eval_samples_per_second": 32.297,
1018
+ "eval_steps_per_second": 8.074,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.25,
1023
+ "grad_norm": 0.2966826260089874,
1024
+ "learning_rate": 9.84706154683634e-06,
1025
+ "loss": 0.0567,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.25,
1030
+ "grad_norm": 0.3383941948413849,
1031
+ "learning_rate": 9.844765093970787e-06,
1032
+ "loss": 0.0597,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.26,
1037
+ "grad_norm": 0.20434536039829254,
1038
+ "learning_rate": 9.842451799924616e-06,
1039
+ "loss": 0.0873,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.26,
1044
+ "grad_norm": 0.27841946482658386,
1045
+ "learning_rate": 9.840121672739208e-06,
1046
+ "loss": 0.0746,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.26,
1051
+ "grad_norm": 0.18767426908016205,
1052
+ "learning_rate": 9.837774720514456e-06,
1053
+ "loss": 0.0928,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.26,
1058
+ "grad_norm": 0.4455524981021881,
1059
+ "learning_rate": 9.835410951408748e-06,
1060
+ "loss": 0.0692,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.26,
1065
+ "grad_norm": 0.24763479828834534,
1066
+ "learning_rate": 9.83303037363892e-06,
1067
+ "loss": 0.0643,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.27,
1072
+ "grad_norm": 0.4498063325881958,
1073
+ "learning_rate": 9.830632995480243e-06,
1074
+ "loss": 0.0736,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.27,
1079
+ "grad_norm": 0.2298639714717865,
1080
+ "learning_rate": 9.828218825266389e-06,
1081
+ "loss": 0.0678,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.27,
1086
+ "grad_norm": 0.46498408913612366,
1087
+ "learning_rate": 9.8257878713894e-06,
1088
+ "loss": 0.0775,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.27,
1093
+ "grad_norm": 0.3503478169441223,
1094
+ "learning_rate": 9.823340142299662e-06,
1095
+ "loss": 0.0749,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.27,
1100
+ "grad_norm": 0.3784450590610504,
1101
+ "learning_rate": 9.820875646505874e-06,
1102
+ "loss": 0.0806,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.27,
1107
+ "grad_norm": 0.2675660252571106,
1108
+ "learning_rate": 9.818394392575018e-06,
1109
+ "loss": 0.1054,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.28,
1114
+ "grad_norm": 0.18610945343971252,
1115
+ "learning_rate": 9.815896389132333e-06,
1116
+ "loss": 0.0793,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.28,
1121
+ "grad_norm": 0.25484928488731384,
1122
+ "learning_rate": 9.813381644861276e-06,
1123
+ "loss": 0.1004,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.28,
1128
+ "grad_norm": 0.2842435836791992,
1129
+ "learning_rate": 9.810850168503506e-06,
1130
+ "loss": 0.0413,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.28,
1135
+ "grad_norm": 0.2782611548900604,
1136
+ "learning_rate": 9.808301968858838e-06,
1137
+ "loss": 0.1083,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.28,
1142
+ "grad_norm": 0.1917373687028885,
1143
+ "learning_rate": 9.805737054785223e-06,
1144
+ "loss": 0.0727,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.28,
1149
+ "grad_norm": 0.2308584451675415,
1150
+ "learning_rate": 9.803155435198713e-06,
1151
+ "loss": 0.0629,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.29,
1156
+ "grad_norm": 0.20095452666282654,
1157
+ "learning_rate": 9.800557119073433e-06,
1158
+ "loss": 0.0857,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.29,
1163
+ "grad_norm": 0.28956976532936096,
1164
+ "learning_rate": 9.797942115441546e-06,
1165
+ "loss": 0.053,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.29,
1170
+ "grad_norm": 0.24081195890903473,
1171
+ "learning_rate": 9.795310433393227e-06,
1172
+ "loss": 0.0611,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.29,
1177
+ "grad_norm": 0.4568108022212982,
1178
+ "learning_rate": 9.792662082076618e-06,
1179
+ "loss": 0.1011,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.29,
1184
+ "grad_norm": 0.16725283861160278,
1185
+ "learning_rate": 9.789997070697821e-06,
1186
+ "loss": 0.0525,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.3,
1191
+ "grad_norm": 0.27492183446884155,
1192
+ "learning_rate": 9.787315408520839e-06,
1193
+ "loss": 0.0581,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.3,
1198
+ "grad_norm": 0.21994265913963318,
1199
+ "learning_rate": 9.78461710486756e-06,
1200
+ "loss": 0.068,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.3,
1205
+ "grad_norm": 0.2217988818883896,
1206
+ "learning_rate": 9.78190216911772e-06,
1207
+ "loss": 0.0663,
1208
+ "step": 169
1209
+ },
1210
+ {
1211
+ "epoch": 0.3,
1212
+ "grad_norm": 0.43498608469963074,
1213
+ "learning_rate": 9.779170610708872e-06,
1214
+ "loss": 0.1003,
1215
+ "step": 170
1216
+ },
1217
+ {
1218
+ "epoch": 0.3,
1219
+ "grad_norm": 0.5494738817214966,
1220
+ "learning_rate": 9.776422439136351e-06,
1221
+ "loss": 0.0901,
1222
+ "step": 171
1223
+ },
1224
+ {
1225
+ "epoch": 0.3,
1226
+ "grad_norm": 0.30544596910476685,
1227
+ "learning_rate": 9.773657663953244e-06,
1228
+ "loss": 0.1049,
1229
+ "step": 172
1230
+ },
1231
+ {
1232
+ "epoch": 0.31,
1233
+ "grad_norm": 0.5173572301864624,
1234
+ "learning_rate": 9.77087629477035e-06,
1235
+ "loss": 0.084,
1236
+ "step": 173
1237
+ },
1238
+ {
1239
+ "epoch": 0.31,
1240
+ "grad_norm": 0.1275845617055893,
1241
+ "learning_rate": 9.768078341256156e-06,
1242
+ "loss": 0.0668,
1243
+ "step": 174
1244
+ },
1245
+ {
1246
+ "epoch": 0.31,
1247
+ "grad_norm": 0.28769540786743164,
1248
+ "learning_rate": 9.765263813136796e-06,
1249
+ "loss": 0.0743,
1250
+ "step": 175
1251
+ },
1252
+ {
1253
+ "epoch": 0.31,
1254
+ "grad_norm": 0.7122567296028137,
1255
+ "learning_rate": 9.762432720196024e-06,
1256
+ "loss": 0.129,
1257
+ "step": 176
1258
+ },
1259
+ {
1260
+ "epoch": 0.31,
1261
+ "grad_norm": 0.28987741470336914,
1262
+ "learning_rate": 9.759585072275171e-06,
1263
+ "loss": 0.077,
1264
+ "step": 177
1265
+ },
1266
+ {
1267
+ "epoch": 0.31,
1268
+ "grad_norm": 0.24338261783123016,
1269
+ "learning_rate": 9.756720879273117e-06,
1270
+ "loss": 0.0763,
1271
+ "step": 178
1272
+ },
1273
+ {
1274
+ "epoch": 0.32,
1275
+ "grad_norm": 0.3709527254104614,
1276
+ "learning_rate": 9.753840151146259e-06,
1277
+ "loss": 0.0639,
1278
+ "step": 179
1279
+ },
1280
+ {
1281
+ "epoch": 0.32,
1282
+ "grad_norm": 0.1488633006811142,
1283
+ "learning_rate": 9.750942897908468e-06,
1284
+ "loss": 0.0825,
1285
+ "step": 180
1286
+ },
1287
+ {
1288
+ "epoch": 0.32,
1289
+ "grad_norm": 0.13455910980701447,
1290
+ "learning_rate": 9.748029129631062e-06,
1291
+ "loss": 0.0594,
1292
+ "step": 181
1293
+ },
1294
+ {
1295
+ "epoch": 0.32,
1296
+ "grad_norm": 0.2483726590871811,
1297
+ "learning_rate": 9.745098856442769e-06,
1298
+ "loss": 0.0621,
1299
+ "step": 182
1300
+ },
1301
+ {
1302
+ "epoch": 0.32,
1303
+ "grad_norm": 0.34576350450515747,
1304
+ "learning_rate": 9.742152088529683e-06,
1305
+ "loss": 0.083,
1306
+ "step": 183
1307
+ },
1308
+ {
1309
+ "epoch": 0.33,
1310
+ "grad_norm": 0.28745996952056885,
1311
+ "learning_rate": 9.739188836135247e-06,
1312
+ "loss": 0.0517,
1313
+ "step": 184
1314
+ },
1315
+ {
1316
+ "epoch": 0.33,
1317
+ "grad_norm": 0.18788190186023712,
1318
+ "learning_rate": 9.736209109560201e-06,
1319
+ "loss": 0.0831,
1320
+ "step": 185
1321
+ },
1322
+ {
1323
+ "epoch": 0.33,
1324
+ "grad_norm": 0.1737545132637024,
1325
+ "learning_rate": 9.733212919162551e-06,
1326
+ "loss": 0.0597,
1327
+ "step": 186
1328
+ },
1329
+ {
1330
+ "epoch": 0.33,
1331
+ "grad_norm": 0.31250202655792236,
1332
+ "learning_rate": 9.730200275357535e-06,
1333
+ "loss": 0.0591,
1334
+ "step": 187
1335
+ },
1336
+ {
1337
+ "epoch": 0.33,
1338
+ "grad_norm": 0.20151746273040771,
1339
+ "learning_rate": 9.727171188617588e-06,
1340
+ "loss": 0.0687,
1341
+ "step": 188
1342
+ },
1343
+ {
1344
+ "epoch": 0.33,
1345
+ "grad_norm": 0.19415058195590973,
1346
+ "learning_rate": 9.7241256694723e-06,
1347
+ "loss": 0.0463,
1348
+ "step": 189
1349
+ },
1350
+ {
1351
+ "epoch": 0.34,
1352
+ "grad_norm": 0.1791050285100937,
1353
+ "learning_rate": 9.721063728508384e-06,
1354
+ "loss": 0.0727,
1355
+ "step": 190
1356
+ },
1357
+ {
1358
+ "epoch": 0.34,
1359
+ "grad_norm": 0.5859791040420532,
1360
+ "learning_rate": 9.71798537636964e-06,
1361
+ "loss": 0.0996,
1362
+ "step": 191
1363
+ },
1364
+ {
1365
+ "epoch": 0.34,
1366
+ "grad_norm": 0.4107828438282013,
1367
+ "learning_rate": 9.714890623756912e-06,
1368
+ "loss": 0.0675,
1369
+ "step": 192
1370
+ },
1371
+ {
1372
+ "epoch": 0.34,
1373
+ "grad_norm": 0.339235782623291,
1374
+ "learning_rate": 9.711779481428057e-06,
1375
+ "loss": 0.0916,
1376
+ "step": 193
1377
+ },
1378
+ {
1379
+ "epoch": 0.34,
1380
+ "grad_norm": 0.3153787851333618,
1381
+ "learning_rate": 9.708651960197904e-06,
1382
+ "loss": 0.0838,
1383
+ "step": 194
1384
+ },
1385
+ {
1386
+ "epoch": 0.34,
1387
+ "grad_norm": 0.38205188512802124,
1388
+ "learning_rate": 9.705508070938219e-06,
1389
+ "loss": 0.0773,
1390
+ "step": 195
1391
+ },
1392
+ {
1393
+ "epoch": 0.35,
1394
+ "grad_norm": 0.48745977878570557,
1395
+ "learning_rate": 9.702347824577667e-06,
1396
+ "loss": 0.0571,
1397
+ "step": 196
1398
+ },
1399
+ {
1400
+ "epoch": 0.35,
1401
+ "grad_norm": 0.3050192594528198,
1402
+ "learning_rate": 9.699171232101769e-06,
1403
+ "loss": 0.0473,
1404
+ "step": 197
1405
+ },
1406
+ {
1407
+ "epoch": 0.35,
1408
+ "grad_norm": 0.22496673464775085,
1409
+ "learning_rate": 9.695978304552871e-06,
1410
+ "loss": 0.0589,
1411
+ "step": 198
1412
+ },
1413
+ {
1414
+ "epoch": 0.35,
1415
+ "grad_norm": 0.3087387979030609,
1416
+ "learning_rate": 9.6927690530301e-06,
1417
+ "loss": 0.0814,
1418
+ "step": 199
1419
+ },
1420
+ {
1421
+ "epoch": 0.35,
1422
+ "grad_norm": 0.1646536886692047,
1423
+ "learning_rate": 9.689543488689332e-06,
1424
+ "loss": 0.0694,
1425
+ "step": 200
1426
+ },
1427
+ {
1428
+ "epoch": 0.36,
1429
+ "grad_norm": 0.3601110279560089,
1430
+ "learning_rate": 9.686301622743144e-06,
1431
+ "loss": 0.0919,
1432
+ "step": 201
1433
+ },
1434
+ {
1435
+ "epoch": 0.36,
1436
+ "grad_norm": 0.20077168941497803,
1437
+ "learning_rate": 9.683043466460783e-06,
1438
+ "loss": 0.0754,
1439
+ "step": 202
1440
+ },
1441
+ {
1442
+ "epoch": 0.36,
1443
+ "grad_norm": 0.2863204777240753,
1444
+ "learning_rate": 9.67976903116812e-06,
1445
+ "loss": 0.0814,
1446
+ "step": 203
1447
+ },
1448
+ {
1449
+ "epoch": 0.36,
1450
+ "grad_norm": 0.30959010124206543,
1451
+ "learning_rate": 9.676478328247623e-06,
1452
+ "loss": 0.1012,
1453
+ "step": 204
1454
+ },
1455
+ {
1456
+ "epoch": 0.36,
1457
+ "grad_norm": 0.2969251871109009,
1458
+ "learning_rate": 9.673171369138297e-06,
1459
+ "loss": 0.0983,
1460
+ "step": 205
1461
+ },
1462
+ {
1463
+ "epoch": 0.36,
1464
+ "grad_norm": 0.19835108518600464,
1465
+ "learning_rate": 9.669848165335668e-06,
1466
+ "loss": 0.0814,
1467
+ "step": 206
1468
+ },
1469
+ {
1470
+ "epoch": 0.37,
1471
+ "grad_norm": 0.30629757046699524,
1472
+ "learning_rate": 9.666508728391719e-06,
1473
+ "loss": 0.0985,
1474
+ "step": 207
1475
+ },
1476
+ {
1477
+ "epoch": 0.37,
1478
+ "grad_norm": 0.17222163081169128,
1479
+ "learning_rate": 9.663153069914874e-06,
1480
+ "loss": 0.0789,
1481
+ "step": 208
1482
+ },
1483
+ {
1484
+ "epoch": 0.37,
1485
+ "grad_norm": 0.4108015298843384,
1486
+ "learning_rate": 9.65978120156994e-06,
1487
+ "loss": 0.0797,
1488
+ "step": 209
1489
+ },
1490
+ {
1491
+ "epoch": 0.37,
1492
+ "grad_norm": 0.2489665299654007,
1493
+ "learning_rate": 9.656393135078067e-06,
1494
+ "loss": 0.0927,
1495
+ "step": 210
1496
+ },
1497
+ {
1498
+ "epoch": 0.37,
1499
+ "grad_norm": 0.27541467547416687,
1500
+ "learning_rate": 9.652988882216725e-06,
1501
+ "loss": 0.0496,
1502
+ "step": 211
1503
+ },
1504
+ {
1505
+ "epoch": 0.38,
1506
+ "grad_norm": 0.17665977776050568,
1507
+ "learning_rate": 9.649568454819637e-06,
1508
+ "loss": 0.0666,
1509
+ "step": 212
1510
+ },
1511
+ {
1512
+ "epoch": 0.38,
1513
+ "grad_norm": 0.20858129858970642,
1514
+ "learning_rate": 9.646131864776762e-06,
1515
+ "loss": 0.0708,
1516
+ "step": 213
1517
+ },
1518
+ {
1519
+ "epoch": 0.38,
1520
+ "grad_norm": 0.18341350555419922,
1521
+ "learning_rate": 9.642679124034234e-06,
1522
+ "loss": 0.0805,
1523
+ "step": 214
1524
+ },
1525
+ {
1526
+ "epoch": 0.38,
1527
+ "grad_norm": 0.26587384939193726,
1528
+ "learning_rate": 9.639210244594335e-06,
1529
+ "loss": 0.0744,
1530
+ "step": 215
1531
+ },
1532
+ {
1533
+ "epoch": 0.38,
1534
+ "grad_norm": 0.20824970304965973,
1535
+ "learning_rate": 9.635725238515447e-06,
1536
+ "loss": 0.0821,
1537
+ "step": 216
1538
+ },
1539
+ {
1540
+ "epoch": 0.38,
1541
+ "grad_norm": 0.20785243809223175,
1542
+ "learning_rate": 9.63222411791201e-06,
1543
+ "loss": 0.0435,
1544
+ "step": 217
1545
+ },
1546
+ {
1547
+ "epoch": 0.39,
1548
+ "grad_norm": 0.45304587483406067,
1549
+ "learning_rate": 9.628706894954481e-06,
1550
+ "loss": 0.0791,
1551
+ "step": 218
1552
+ },
1553
+ {
1554
+ "epoch": 0.39,
1555
+ "grad_norm": 0.34389665722846985,
1556
+ "learning_rate": 9.62517358186929e-06,
1557
+ "loss": 0.0829,
1558
+ "step": 219
1559
+ },
1560
+ {
1561
+ "epoch": 0.39,
1562
+ "grad_norm": 0.24149852991104126,
1563
+ "learning_rate": 9.621624190938802e-06,
1564
+ "loss": 0.0555,
1565
+ "step": 220
1566
+ },
1567
+ {
1568
+ "epoch": 0.39,
1569
+ "grad_norm": 0.24253778159618378,
1570
+ "learning_rate": 9.61805873450127e-06,
1571
+ "loss": 0.0948,
1572
+ "step": 221
1573
+ },
1574
+ {
1575
+ "epoch": 0.39,
1576
+ "grad_norm": 0.24377629160881042,
1577
+ "learning_rate": 9.614477224950788e-06,
1578
+ "loss": 0.0758,
1579
+ "step": 222
1580
+ },
1581
+ {
1582
+ "epoch": 0.39,
1583
+ "grad_norm": 0.1714078187942505,
1584
+ "learning_rate": 9.610879674737263e-06,
1585
+ "loss": 0.0773,
1586
+ "step": 223
1587
+ },
1588
+ {
1589
+ "epoch": 0.4,
1590
+ "grad_norm": 0.15262386202812195,
1591
+ "learning_rate": 9.607266096366353e-06,
1592
+ "loss": 0.0523,
1593
+ "step": 224
1594
+ },
1595
+ {
1596
+ "epoch": 0.4,
1597
+ "grad_norm": 0.34207943081855774,
1598
+ "learning_rate": 9.603636502399436e-06,
1599
+ "loss": 0.0981,
1600
+ "step": 225
1601
+ },
1602
+ {
1603
+ "epoch": 0.4,
1604
+ "grad_norm": 0.2515898048877716,
1605
+ "learning_rate": 9.599990905453567e-06,
1606
+ "loss": 0.0576,
1607
+ "step": 226
1608
+ },
1609
+ {
1610
+ "epoch": 0.4,
1611
+ "grad_norm": 0.509267270565033,
1612
+ "learning_rate": 9.59632931820142e-06,
1613
+ "loss": 0.0819,
1614
+ "step": 227
1615
+ },
1616
+ {
1617
+ "epoch": 0.4,
1618
+ "grad_norm": 0.21576029062271118,
1619
+ "learning_rate": 9.592651753371264e-06,
1620
+ "loss": 0.0758,
1621
+ "step": 228
1622
+ },
1623
+ {
1624
+ "epoch": 0.41,
1625
+ "grad_norm": 0.44684383273124695,
1626
+ "learning_rate": 9.588958223746903e-06,
1627
+ "loss": 0.0543,
1628
+ "step": 229
1629
+ },
1630
+ {
1631
+ "epoch": 0.41,
1632
+ "grad_norm": 0.4631918668746948,
1633
+ "learning_rate": 9.585248742167638e-06,
1634
+ "loss": 0.0795,
1635
+ "step": 230
1636
+ },
1637
+ {
1638
+ "epoch": 0.41,
1639
+ "grad_norm": 0.3433883488178253,
1640
+ "learning_rate": 9.581523321528224e-06,
1641
+ "loss": 0.0505,
1642
+ "step": 231
1643
+ },
1644
+ {
1645
+ "epoch": 0.41,
1646
+ "grad_norm": 0.23749905824661255,
1647
+ "learning_rate": 9.577781974778817e-06,
1648
+ "loss": 0.0463,
1649
+ "step": 232
1650
+ },
1651
+ {
1652
+ "epoch": 0.41,
1653
+ "grad_norm": 0.26895391941070557,
1654
+ "learning_rate": 9.574024714924941e-06,
1655
+ "loss": 0.0501,
1656
+ "step": 233
1657
+ },
1658
+ {
1659
+ "epoch": 0.41,
1660
+ "grad_norm": 0.45005208253860474,
1661
+ "learning_rate": 9.570251555027432e-06,
1662
+ "loss": 0.1112,
1663
+ "step": 234
1664
+ },
1665
+ {
1666
+ "epoch": 0.42,
1667
+ "grad_norm": 0.21089734137058258,
1668
+ "learning_rate": 9.566462508202403e-06,
1669
+ "loss": 0.0912,
1670
+ "step": 235
1671
+ },
1672
+ {
1673
+ "epoch": 0.42,
1674
+ "grad_norm": 0.22349245846271515,
1675
+ "learning_rate": 9.562657587621186e-06,
1676
+ "loss": 0.0671,
1677
+ "step": 236
1678
+ },
1679
+ {
1680
+ "epoch": 0.42,
1681
+ "grad_norm": 0.20209869742393494,
1682
+ "learning_rate": 9.558836806510292e-06,
1683
+ "loss": 0.0507,
1684
+ "step": 237
1685
+ },
1686
+ {
1687
+ "epoch": 0.42,
1688
+ "grad_norm": 0.29422205686569214,
1689
+ "learning_rate": 9.555000178151375e-06,
1690
+ "loss": 0.0744,
1691
+ "step": 238
1692
+ },
1693
+ {
1694
+ "epoch": 0.42,
1695
+ "grad_norm": 0.2201872318983078,
1696
+ "learning_rate": 9.551147715881167e-06,
1697
+ "loss": 0.0784,
1698
+ "step": 239
1699
+ },
1700
+ {
1701
+ "epoch": 0.42,
1702
+ "grad_norm": 0.2708396017551422,
1703
+ "learning_rate": 9.547279433091446e-06,
1704
+ "loss": 0.0574,
1705
+ "step": 240
1706
+ },
1707
+ {
1708
+ "epoch": 0.43,
1709
+ "grad_norm": 0.1722852736711502,
1710
+ "learning_rate": 9.543395343228984e-06,
1711
+ "loss": 0.0788,
1712
+ "step": 241
1713
+ },
1714
+ {
1715
+ "epoch": 0.43,
1716
+ "grad_norm": 0.5377947688102722,
1717
+ "learning_rate": 9.5394954597955e-06,
1718
+ "loss": 0.0908,
1719
+ "step": 242
1720
+ },
1721
+ {
1722
+ "epoch": 0.43,
1723
+ "grad_norm": 0.2269710898399353,
1724
+ "learning_rate": 9.535579796347612e-06,
1725
+ "loss": 0.078,
1726
+ "step": 243
1727
+ },
1728
+ {
1729
+ "epoch": 0.43,
1730
+ "grad_norm": 0.2239355891942978,
1731
+ "learning_rate": 9.531648366496799e-06,
1732
+ "loss": 0.0501,
1733
+ "step": 244
1734
+ },
1735
+ {
1736
+ "epoch": 0.43,
1737
+ "grad_norm": 0.20963357388973236,
1738
+ "learning_rate": 9.527701183909336e-06,
1739
+ "loss": 0.0611,
1740
+ "step": 245
1741
+ },
1742
+ {
1743
+ "epoch": 0.44,
1744
+ "grad_norm": 0.2847237288951874,
1745
+ "learning_rate": 9.52373826230627e-06,
1746
+ "loss": 0.0761,
1747
+ "step": 246
1748
+ },
1749
+ {
1750
+ "epoch": 0.44,
1751
+ "grad_norm": 0.20428815484046936,
1752
+ "learning_rate": 9.519759615463346e-06,
1753
+ "loss": 0.0684,
1754
+ "step": 247
1755
+ },
1756
+ {
1757
+ "epoch": 0.44,
1758
+ "grad_norm": 0.18516795337200165,
1759
+ "learning_rate": 9.51576525721098e-06,
1760
+ "loss": 0.0667,
1761
+ "step": 248
1762
+ },
1763
+ {
1764
+ "epoch": 0.44,
1765
+ "grad_norm": 0.4787046015262604,
1766
+ "learning_rate": 9.511755201434206e-06,
1767
+ "loss": 0.1339,
1768
+ "step": 249
1769
+ },
1770
+ {
1771
+ "epoch": 0.44,
1772
+ "grad_norm": 0.5016088485717773,
1773
+ "learning_rate": 9.507729462072615e-06,
1774
+ "loss": 0.0723,
1775
+ "step": 250
1776
+ },
1777
+ {
1778
+ "epoch": 0.44,
1779
+ "grad_norm": 0.24285417795181274,
1780
+ "learning_rate": 9.503688053120327e-06,
1781
+ "loss": 0.0553,
1782
+ "step": 251
1783
+ },
1784
+ {
1785
+ "epoch": 0.45,
1786
+ "grad_norm": 0.44292014837265015,
1787
+ "learning_rate": 9.499630988625926e-06,
1788
+ "loss": 0.071,
1789
+ "step": 252
1790
+ },
1791
+ {
1792
+ "epoch": 0.45,
1793
+ "grad_norm": 0.7392637133598328,
1794
+ "learning_rate": 9.495558282692421e-06,
1795
+ "loss": 0.1074,
1796
+ "step": 253
1797
+ },
1798
+ {
1799
+ "epoch": 0.45,
1800
+ "grad_norm": 0.24650004506111145,
1801
+ "learning_rate": 9.491469949477189e-06,
1802
+ "loss": 0.0505,
1803
+ "step": 254
1804
+ },
1805
+ {
1806
+ "epoch": 0.45,
1807
+ "grad_norm": 0.22753530740737915,
1808
+ "learning_rate": 9.48736600319193e-06,
1809
+ "loss": 0.065,
1810
+ "step": 255
1811
+ },
1812
+ {
1813
+ "epoch": 0.45,
1814
+ "grad_norm": 0.3731183111667633,
1815
+ "learning_rate": 9.483246458102626e-06,
1816
+ "loss": 0.0809,
1817
+ "step": 256
1818
+ },
1819
+ {
1820
+ "epoch": 0.45,
1821
+ "grad_norm": 0.16581465303897858,
1822
+ "learning_rate": 9.479111328529473e-06,
1823
+ "loss": 0.0575,
1824
+ "step": 257
1825
+ },
1826
+ {
1827
+ "epoch": 0.46,
1828
+ "grad_norm": 0.2750982344150543,
1829
+ "learning_rate": 9.474960628846844e-06,
1830
+ "loss": 0.0967,
1831
+ "step": 258
1832
+ },
1833
+ {
1834
+ "epoch": 0.46,
1835
+ "grad_norm": 0.3518216609954834,
1836
+ "learning_rate": 9.470794373483236e-06,
1837
+ "loss": 0.09,
1838
+ "step": 259
1839
+ },
1840
+ {
1841
+ "epoch": 0.46,
1842
+ "grad_norm": 0.3871642053127289,
1843
+ "learning_rate": 9.466612576921223e-06,
1844
+ "loss": 0.0741,
1845
+ "step": 260
1846
+ },
1847
+ {
1848
+ "epoch": 0.46,
1849
+ "grad_norm": 0.23743928968906403,
1850
+ "learning_rate": 9.462415253697402e-06,
1851
+ "loss": 0.0764,
1852
+ "step": 261
1853
+ },
1854
+ {
1855
+ "epoch": 0.46,
1856
+ "grad_norm": 0.4438982903957367,
1857
+ "learning_rate": 9.458202418402339e-06,
1858
+ "loss": 0.089,
1859
+ "step": 262
1860
+ },
1861
+ {
1862
+ "epoch": 0.47,
1863
+ "grad_norm": 0.1571800857782364,
1864
+ "learning_rate": 9.453974085680527e-06,
1865
+ "loss": 0.0481,
1866
+ "step": 263
1867
+ },
1868
+ {
1869
+ "epoch": 0.47,
1870
+ "grad_norm": 0.243282288312912,
1871
+ "learning_rate": 9.449730270230326e-06,
1872
+ "loss": 0.0843,
1873
+ "step": 264
1874
+ },
1875
+ {
1876
+ "epoch": 0.47,
1877
+ "grad_norm": 0.21889477968215942,
1878
+ "learning_rate": 9.445470986803922e-06,
1879
+ "loss": 0.0456,
1880
+ "step": 265
1881
+ },
1882
+ {
1883
+ "epoch": 0.47,
1884
+ "grad_norm": 0.14643190801143646,
1885
+ "learning_rate": 9.441196250207267e-06,
1886
+ "loss": 0.0555,
1887
+ "step": 266
1888
+ },
1889
+ {
1890
+ "epoch": 0.47,
1891
+ "grad_norm": 0.6666358709335327,
1892
+ "learning_rate": 9.436906075300032e-06,
1893
+ "loss": 0.0775,
1894
+ "step": 267
1895
+ },
1896
+ {
1897
+ "epoch": 0.47,
1898
+ "grad_norm": 0.16846437752246857,
1899
+ "learning_rate": 9.432600476995552e-06,
1900
+ "loss": 0.0354,
1901
+ "step": 268
1902
+ },
1903
+ {
1904
+ "epoch": 0.48,
1905
+ "grad_norm": 0.23625656962394714,
1906
+ "learning_rate": 9.428279470260776e-06,
1907
+ "loss": 0.0837,
1908
+ "step": 269
1909
+ },
1910
+ {
1911
+ "epoch": 0.48,
1912
+ "grad_norm": 0.25802698731422424,
1913
+ "learning_rate": 9.423943070116219e-06,
1914
+ "loss": 0.0685,
1915
+ "step": 270
1916
+ },
1917
+ {
1918
+ "epoch": 0.48,
1919
+ "grad_norm": 0.1842992752790451,
1920
+ "learning_rate": 9.419591291635901e-06,
1921
+ "loss": 0.0418,
1922
+ "step": 271
1923
+ },
1924
+ {
1925
+ "epoch": 0.48,
1926
+ "grad_norm": 0.3693784773349762,
1927
+ "learning_rate": 9.415224149947307e-06,
1928
+ "loss": 0.0619,
1929
+ "step": 272
1930
+ },
1931
+ {
1932
+ "epoch": 0.48,
1933
+ "grad_norm": 0.36359575390815735,
1934
+ "learning_rate": 9.410841660231315e-06,
1935
+ "loss": 0.0675,
1936
+ "step": 273
1937
+ },
1938
+ {
1939
+ "epoch": 0.48,
1940
+ "grad_norm": 0.25318172574043274,
1941
+ "learning_rate": 9.406443837722168e-06,
1942
+ "loss": 0.0521,
1943
+ "step": 274
1944
+ },
1945
+ {
1946
+ "epoch": 0.49,
1947
+ "grad_norm": 0.32068488001823425,
1948
+ "learning_rate": 9.402030697707398e-06,
1949
+ "loss": 0.0744,
1950
+ "step": 275
1951
+ },
1952
+ {
1953
+ "epoch": 0.49,
1954
+ "grad_norm": 0.2709636390209198,
1955
+ "learning_rate": 9.397602255527792e-06,
1956
+ "loss": 0.0446,
1957
+ "step": 276
1958
+ },
1959
+ {
1960
+ "epoch": 0.49,
1961
+ "grad_norm": 0.4686291813850403,
1962
+ "learning_rate": 9.393158526577322e-06,
1963
+ "loss": 0.0683,
1964
+ "step": 277
1965
+ },
1966
+ {
1967
+ "epoch": 0.49,
1968
+ "grad_norm": 0.32740774750709534,
1969
+ "learning_rate": 9.388699526303106e-06,
1970
+ "loss": 0.061,
1971
+ "step": 278
1972
+ },
1973
+ {
1974
+ "epoch": 0.49,
1975
+ "grad_norm": 0.5102832913398743,
1976
+ "learning_rate": 9.38422527020534e-06,
1977
+ "loss": 0.0904,
1978
+ "step": 279
1979
+ },
1980
+ {
1981
+ "epoch": 0.5,
1982
+ "grad_norm": 0.3581833243370056,
1983
+ "learning_rate": 9.37973577383726e-06,
1984
+ "loss": 0.0691,
1985
+ "step": 280
1986
+ },
1987
+ {
1988
+ "epoch": 0.5,
1989
+ "grad_norm": 0.22778642177581787,
1990
+ "learning_rate": 9.375231052805074e-06,
1991
+ "loss": 0.0507,
1992
+ "step": 281
1993
+ },
1994
+ {
1995
+ "epoch": 0.5,
1996
+ "grad_norm": 0.3017262816429138,
1997
+ "learning_rate": 9.370711122767912e-06,
1998
+ "loss": 0.0909,
1999
+ "step": 282
2000
+ },
2001
+ {
2002
+ "epoch": 0.5,
2003
+ "grad_norm": 0.24568532407283783,
2004
+ "learning_rate": 9.36617599943778e-06,
2005
+ "loss": 0.0622,
2006
+ "step": 283
2007
+ },
2008
+ {
2009
+ "epoch": 0.5,
2010
+ "grad_norm": 0.3963547348976135,
2011
+ "learning_rate": 9.361625698579493e-06,
2012
+ "loss": 0.1131,
2013
+ "step": 284
2014
+ },
2015
+ {
2016
+ "epoch": 0.5,
2017
+ "eval_loss": 0.07626692205667496,
2018
+ "eval_runtime": 14.7121,
2019
+ "eval_samples_per_second": 32.354,
2020
+ "eval_steps_per_second": 8.089,
2021
+ "step": 284
2022
+ },
2023
+ {
2024
+ "epoch": 0.5,
2025
+ "grad_norm": 0.6276136636734009,
2026
+ "learning_rate": 9.357060236010626e-06,
2027
+ "loss": 0.1067,
2028
+ "step": 285
2029
+ },
2030
+ {
2031
+ "epoch": 0.51,
2032
+ "grad_norm": 0.30459901690483093,
2033
+ "learning_rate": 9.35247962760146e-06,
2034
+ "loss": 0.0863,
2035
+ "step": 286
2036
+ },
2037
+ {
2038
+ "epoch": 0.51,
2039
+ "grad_norm": 0.5768241286277771,
2040
+ "learning_rate": 9.347883889274922e-06,
2041
+ "loss": 0.0966,
2042
+ "step": 287
2043
+ },
2044
+ {
2045
+ "epoch": 0.51,
2046
+ "grad_norm": 0.14496010541915894,
2047
+ "learning_rate": 9.34327303700654e-06,
2048
+ "loss": 0.0242,
2049
+ "step": 288
2050
+ },
2051
+ {
2052
+ "epoch": 0.51,
2053
+ "grad_norm": 0.25412389636039734,
2054
+ "learning_rate": 9.338647086824373e-06,
2055
+ "loss": 0.071,
2056
+ "step": 289
2057
+ },
2058
+ {
2059
+ "epoch": 0.51,
2060
+ "grad_norm": 0.23926912248134613,
2061
+ "learning_rate": 9.334006054808966e-06,
2062
+ "loss": 0.0378,
2063
+ "step": 290
2064
+ },
2065
+ {
2066
+ "epoch": 0.51,
2067
+ "grad_norm": 0.7999410629272461,
2068
+ "learning_rate": 9.329349957093293e-06,
2069
+ "loss": 0.0912,
2070
+ "step": 291
2071
+ },
2072
+ {
2073
+ "epoch": 0.52,
2074
+ "grad_norm": 0.18663926422595978,
2075
+ "learning_rate": 9.324678809862696e-06,
2076
+ "loss": 0.0658,
2077
+ "step": 292
2078
+ },
2079
+ {
2080
+ "epoch": 0.52,
2081
+ "grad_norm": 0.27844029664993286,
2082
+ "learning_rate": 9.319992629354828e-06,
2083
+ "loss": 0.0657,
2084
+ "step": 293
2085
+ },
2086
+ {
2087
+ "epoch": 0.52,
2088
+ "grad_norm": 0.295076847076416,
2089
+ "learning_rate": 9.31529143185961e-06,
2090
+ "loss": 0.0497,
2091
+ "step": 294
2092
+ },
2093
+ {
2094
+ "epoch": 0.52,
2095
+ "grad_norm": 0.25130167603492737,
2096
+ "learning_rate": 9.310575233719155e-06,
2097
+ "loss": 0.0771,
2098
+ "step": 295
2099
+ },
2100
+ {
2101
+ "epoch": 0.52,
2102
+ "grad_norm": 0.3607313632965088,
2103
+ "learning_rate": 9.305844051327725e-06,
2104
+ "loss": 0.0852,
2105
+ "step": 296
2106
+ },
2107
+ {
2108
+ "epoch": 0.53,
2109
+ "grad_norm": 0.2247592657804489,
2110
+ "learning_rate": 9.301097901131671e-06,
2111
+ "loss": 0.0793,
2112
+ "step": 297
2113
+ },
2114
+ {
2115
+ "epoch": 0.53,
2116
+ "grad_norm": 0.34789037704467773,
2117
+ "learning_rate": 9.296336799629368e-06,
2118
+ "loss": 0.0602,
2119
+ "step": 298
2120
+ },
2121
+ {
2122
+ "epoch": 0.53,
2123
+ "grad_norm": 0.27349668741226196,
2124
+ "learning_rate": 9.291560763371173e-06,
2125
+ "loss": 0.0546,
2126
+ "step": 299
2127
+ },
2128
+ {
2129
+ "epoch": 0.53,
2130
+ "grad_norm": 0.15801368653774261,
2131
+ "learning_rate": 9.28676980895935e-06,
2132
+ "loss": 0.0545,
2133
+ "step": 300
2134
+ },
2135
+ {
2136
+ "epoch": 0.53,
2137
+ "grad_norm": 0.22296564280986786,
2138
+ "learning_rate": 9.28196395304803e-06,
2139
+ "loss": 0.0512,
2140
+ "step": 301
2141
+ },
2142
+ {
2143
+ "epoch": 0.53,
2144
+ "grad_norm": 0.18935079872608185,
2145
+ "learning_rate": 9.277143212343134e-06,
2146
+ "loss": 0.0382,
2147
+ "step": 302
2148
+ },
2149
+ {
2150
+ "epoch": 0.54,
2151
+ "grad_norm": 0.41481491923332214,
2152
+ "learning_rate": 9.272307603602334e-06,
2153
+ "loss": 0.0924,
2154
+ "step": 303
2155
+ },
2156
+ {
2157
+ "epoch": 0.54,
2158
+ "grad_norm": 0.4681742489337921,
2159
+ "learning_rate": 9.26745714363498e-06,
2160
+ "loss": 0.0644,
2161
+ "step": 304
2162
+ },
2163
+ {
2164
+ "epoch": 0.54,
2165
+ "grad_norm": 0.2106870412826538,
2166
+ "learning_rate": 9.262591849302049e-06,
2167
+ "loss": 0.0562,
2168
+ "step": 305
2169
+ },
2170
+ {
2171
+ "epoch": 0.54,
2172
+ "grad_norm": 0.45636868476867676,
2173
+ "learning_rate": 9.257711737516083e-06,
2174
+ "loss": 0.0751,
2175
+ "step": 306
2176
+ },
2177
+ {
2178
+ "epoch": 0.54,
2179
+ "grad_norm": 0.21162806451320648,
2180
+ "learning_rate": 9.252816825241135e-06,
2181
+ "loss": 0.0356,
2182
+ "step": 307
2183
+ },
2184
+ {
2185
+ "epoch": 0.54,
2186
+ "grad_norm": 0.31407129764556885,
2187
+ "learning_rate": 9.247907129492707e-06,
2188
+ "loss": 0.0713,
2189
+ "step": 308
2190
+ },
2191
+ {
2192
+ "epoch": 0.55,
2193
+ "grad_norm": 0.15091249346733093,
2194
+ "learning_rate": 9.242982667337686e-06,
2195
+ "loss": 0.066,
2196
+ "step": 309
2197
+ },
2198
+ {
2199
+ "epoch": 0.55,
2200
+ "grad_norm": 0.22152362763881683,
2201
+ "learning_rate": 9.238043455894294e-06,
2202
+ "loss": 0.0732,
2203
+ "step": 310
2204
+ },
2205
+ {
2206
+ "epoch": 0.55,
2207
+ "grad_norm": 0.21332816779613495,
2208
+ "learning_rate": 9.233089512332021e-06,
2209
+ "loss": 0.0744,
2210
+ "step": 311
2211
+ },
2212
+ {
2213
+ "epoch": 0.55,
2214
+ "grad_norm": 0.3001808524131775,
2215
+ "learning_rate": 9.228120853871571e-06,
2216
+ "loss": 0.0337,
2217
+ "step": 312
2218
+ },
2219
+ {
2220
+ "epoch": 0.55,
2221
+ "grad_norm": 0.45393407344818115,
2222
+ "learning_rate": 9.223137497784798e-06,
2223
+ "loss": 0.0704,
2224
+ "step": 313
2225
+ },
2226
+ {
2227
+ "epoch": 0.56,
2228
+ "grad_norm": 0.36986440420150757,
2229
+ "learning_rate": 9.218139461394644e-06,
2230
+ "loss": 0.0751,
2231
+ "step": 314
2232
+ },
2233
+ {
2234
+ "epoch": 0.56,
2235
+ "grad_norm": 0.25236037373542786,
2236
+ "learning_rate": 9.213126762075088e-06,
2237
+ "loss": 0.0782,
2238
+ "step": 315
2239
+ },
2240
+ {
2241
+ "epoch": 0.56,
2242
+ "grad_norm": 0.19866494834423065,
2243
+ "learning_rate": 9.208099417251077e-06,
2244
+ "loss": 0.0404,
2245
+ "step": 316
2246
+ },
2247
+ {
2248
+ "epoch": 0.56,
2249
+ "grad_norm": 0.18358244001865387,
2250
+ "learning_rate": 9.203057444398469e-06,
2251
+ "loss": 0.0362,
2252
+ "step": 317
2253
+ },
2254
+ {
2255
+ "epoch": 0.56,
2256
+ "grad_norm": 0.38209205865859985,
2257
+ "learning_rate": 9.198000861043967e-06,
2258
+ "loss": 0.0531,
2259
+ "step": 318
2260
+ },
2261
+ {
2262
+ "epoch": 0.56,
2263
+ "grad_norm": 0.2181481420993805,
2264
+ "learning_rate": 9.19292968476507e-06,
2265
+ "loss": 0.0607,
2266
+ "step": 319
2267
+ },
2268
+ {
2269
+ "epoch": 0.57,
2270
+ "grad_norm": 0.19979895651340485,
2271
+ "learning_rate": 9.187843933189994e-06,
2272
+ "loss": 0.0654,
2273
+ "step": 320
2274
+ },
2275
+ {
2276
+ "epoch": 0.57,
2277
+ "grad_norm": 0.46315455436706543,
2278
+ "learning_rate": 9.182743623997634e-06,
2279
+ "loss": 0.0654,
2280
+ "step": 321
2281
+ },
2282
+ {
2283
+ "epoch": 0.57,
2284
+ "grad_norm": 0.31687167286872864,
2285
+ "learning_rate": 9.17762877491748e-06,
2286
+ "loss": 0.0628,
2287
+ "step": 322
2288
+ },
2289
+ {
2290
+ "epoch": 0.57,
2291
+ "grad_norm": 0.3118394613265991,
2292
+ "learning_rate": 9.172499403729567e-06,
2293
+ "loss": 0.0808,
2294
+ "step": 323
2295
+ },
2296
+ {
2297
+ "epoch": 0.57,
2298
+ "grad_norm": 0.8999722599983215,
2299
+ "learning_rate": 9.167355528264415e-06,
2300
+ "loss": 0.1028,
2301
+ "step": 324
2302
+ },
2303
+ {
2304
+ "epoch": 0.57,
2305
+ "grad_norm": 0.41446566581726074,
2306
+ "learning_rate": 9.162197166402957e-06,
2307
+ "loss": 0.0896,
2308
+ "step": 325
2309
+ },
2310
+ {
2311
+ "epoch": 0.58,
2312
+ "grad_norm": 0.23004719614982605,
2313
+ "learning_rate": 9.157024336076488e-06,
2314
+ "loss": 0.067,
2315
+ "step": 326
2316
+ },
2317
+ {
2318
+ "epoch": 0.58,
2319
+ "grad_norm": 0.42118194699287415,
2320
+ "learning_rate": 9.151837055266595e-06,
2321
+ "loss": 0.0391,
2322
+ "step": 327
2323
+ },
2324
+ {
2325
+ "epoch": 0.58,
2326
+ "grad_norm": 0.21042917668819427,
2327
+ "learning_rate": 9.1466353420051e-06,
2328
+ "loss": 0.0677,
2329
+ "step": 328
2330
+ },
2331
+ {
2332
+ "epoch": 0.58,
2333
+ "grad_norm": 0.22170236706733704,
2334
+ "learning_rate": 9.14141921437399e-06,
2335
+ "loss": 0.0551,
2336
+ "step": 329
2337
+ },
2338
+ {
2339
+ "epoch": 0.58,
2340
+ "grad_norm": 0.24892501533031464,
2341
+ "learning_rate": 9.136188690505363e-06,
2342
+ "loss": 0.0527,
2343
+ "step": 330
2344
+ },
2345
+ {
2346
+ "epoch": 0.59,
2347
+ "grad_norm": 0.319352924823761,
2348
+ "learning_rate": 9.130943788581359e-06,
2349
+ "loss": 0.0843,
2350
+ "step": 331
2351
+ },
2352
+ {
2353
+ "epoch": 0.59,
2354
+ "grad_norm": 0.36097249388694763,
2355
+ "learning_rate": 9.1256845268341e-06,
2356
+ "loss": 0.108,
2357
+ "step": 332
2358
+ },
2359
+ {
2360
+ "epoch": 0.59,
2361
+ "grad_norm": 0.39498621225357056,
2362
+ "learning_rate": 9.120410923545619e-06,
2363
+ "loss": 0.053,
2364
+ "step": 333
2365
+ },
2366
+ {
2367
+ "epoch": 0.59,
2368
+ "grad_norm": 0.5976508855819702,
2369
+ "learning_rate": 9.115122997047812e-06,
2370
+ "loss": 0.093,
2371
+ "step": 334
2372
+ },
2373
+ {
2374
+ "epoch": 0.59,
2375
+ "grad_norm": 0.3573974072933197,
2376
+ "learning_rate": 9.109820765722357e-06,
2377
+ "loss": 0.0988,
2378
+ "step": 335
2379
+ },
2380
+ {
2381
+ "epoch": 0.59,
2382
+ "grad_norm": 0.3447941839694977,
2383
+ "learning_rate": 9.10450424800066e-06,
2384
+ "loss": 0.1083,
2385
+ "step": 336
2386
+ },
2387
+ {
2388
+ "epoch": 0.6,
2389
+ "grad_norm": 0.36789995431900024,
2390
+ "learning_rate": 9.099173462363794e-06,
2391
+ "loss": 0.048,
2392
+ "step": 337
2393
+ },
2394
+ {
2395
+ "epoch": 0.6,
2396
+ "grad_norm": 0.23102298378944397,
2397
+ "learning_rate": 9.093828427342419e-06,
2398
+ "loss": 0.0615,
2399
+ "step": 338
2400
+ },
2401
+ {
2402
+ "epoch": 0.6,
2403
+ "grad_norm": 0.2154015451669693,
2404
+ "learning_rate": 9.088469161516735e-06,
2405
+ "loss": 0.0775,
2406
+ "step": 339
2407
+ },
2408
+ {
2409
+ "epoch": 0.6,
2410
+ "grad_norm": 0.2312682718038559,
2411
+ "learning_rate": 9.083095683516414e-06,
2412
+ "loss": 0.0708,
2413
+ "step": 340
2414
+ },
2415
+ {
2416
+ "epoch": 0.6,
2417
+ "grad_norm": 0.1561180055141449,
2418
+ "learning_rate": 9.077708012020525e-06,
2419
+ "loss": 0.0628,
2420
+ "step": 341
2421
+ },
2422
+ {
2423
+ "epoch": 0.61,
2424
+ "grad_norm": 0.2561321556568146,
2425
+ "learning_rate": 9.072306165757476e-06,
2426
+ "loss": 0.0913,
2427
+ "step": 342
2428
+ },
2429
+ {
2430
+ "epoch": 0.61,
2431
+ "grad_norm": 0.4026300013065338,
2432
+ "learning_rate": 9.066890163504956e-06,
2433
+ "loss": 0.0757,
2434
+ "step": 343
2435
+ },
2436
+ {
2437
+ "epoch": 0.61,
2438
+ "grad_norm": 0.2731042802333832,
2439
+ "learning_rate": 9.061460024089853e-06,
2440
+ "loss": 0.1009,
2441
+ "step": 344
2442
+ },
2443
+ {
2444
+ "epoch": 0.61,
2445
+ "grad_norm": 0.32153868675231934,
2446
+ "learning_rate": 9.056015766388205e-06,
2447
+ "loss": 0.0841,
2448
+ "step": 345
2449
+ },
2450
+ {
2451
+ "epoch": 0.61,
2452
+ "grad_norm": 0.2845655381679535,
2453
+ "learning_rate": 9.050557409325126e-06,
2454
+ "loss": 0.0573,
2455
+ "step": 346
2456
+ },
2457
+ {
2458
+ "epoch": 0.61,
2459
+ "grad_norm": 0.2339751124382019,
2460
+ "learning_rate": 9.045084971874738e-06,
2461
+ "loss": 0.083,
2462
+ "step": 347
2463
+ },
2464
+ {
2465
+ "epoch": 0.62,
2466
+ "grad_norm": 0.1685064285993576,
2467
+ "learning_rate": 9.039598473060114e-06,
2468
+ "loss": 0.0598,
2469
+ "step": 348
2470
+ },
2471
+ {
2472
+ "epoch": 0.62,
2473
+ "grad_norm": 0.2221630960702896,
2474
+ "learning_rate": 9.0340979319532e-06,
2475
+ "loss": 0.0639,
2476
+ "step": 349
2477
+ },
2478
+ {
2479
+ "epoch": 0.62,
2480
+ "grad_norm": 0.24915754795074463,
2481
+ "learning_rate": 9.028583367674767e-06,
2482
+ "loss": 0.1017,
2483
+ "step": 350
2484
+ },
2485
+ {
2486
+ "epoch": 0.62,
2487
+ "grad_norm": 0.21576786041259766,
2488
+ "learning_rate": 9.023054799394316e-06,
2489
+ "loss": 0.0598,
2490
+ "step": 351
2491
+ },
2492
+ {
2493
+ "epoch": 0.62,
2494
+ "grad_norm": 0.46793073415756226,
2495
+ "learning_rate": 9.017512246330043e-06,
2496
+ "loss": 0.0845,
2497
+ "step": 352
2498
+ },
2499
+ {
2500
+ "epoch": 0.62,
2501
+ "grad_norm": 0.23132359981536865,
2502
+ "learning_rate": 9.01195572774875e-06,
2503
+ "loss": 0.0865,
2504
+ "step": 353
2505
+ },
2506
+ {
2507
+ "epoch": 0.63,
2508
+ "grad_norm": 0.1407833993434906,
2509
+ "learning_rate": 9.006385262965786e-06,
2510
+ "loss": 0.0771,
2511
+ "step": 354
2512
+ },
2513
+ {
2514
+ "epoch": 0.63,
2515
+ "grad_norm": 0.34604090452194214,
2516
+ "learning_rate": 9.00080087134498e-06,
2517
+ "loss": 0.1058,
2518
+ "step": 355
2519
+ },
2520
+ {
2521
+ "epoch": 0.63,
2522
+ "grad_norm": 0.31735068559646606,
2523
+ "learning_rate": 8.995202572298575e-06,
2524
+ "loss": 0.0833,
2525
+ "step": 356
2526
+ },
2527
+ {
2528
+ "epoch": 0.63,
2529
+ "grad_norm": 0.2618115246295929,
2530
+ "learning_rate": 8.989590385287156e-06,
2531
+ "loss": 0.0688,
2532
+ "step": 357
2533
+ },
2534
+ {
2535
+ "epoch": 0.63,
2536
+ "grad_norm": 0.22336295247077942,
2537
+ "learning_rate": 8.983964329819584e-06,
2538
+ "loss": 0.0963,
2539
+ "step": 358
2540
+ },
2541
+ {
2542
+ "epoch": 0.64,
2543
+ "grad_norm": 0.27905017137527466,
2544
+ "learning_rate": 8.97832442545293e-06,
2545
+ "loss": 0.068,
2546
+ "step": 359
2547
+ },
2548
+ {
2549
+ "epoch": 0.64,
2550
+ "grad_norm": 0.16449055075645447,
2551
+ "learning_rate": 8.972670691792409e-06,
2552
+ "loss": 0.0951,
2553
+ "step": 360
2554
+ },
2555
+ {
2556
+ "epoch": 0.64,
2557
+ "grad_norm": 0.2156919538974762,
2558
+ "learning_rate": 8.967003148491305e-06,
2559
+ "loss": 0.0495,
2560
+ "step": 361
2561
+ },
2562
+ {
2563
+ "epoch": 0.64,
2564
+ "grad_norm": 0.17048591375350952,
2565
+ "learning_rate": 8.961321815250905e-06,
2566
+ "loss": 0.0739,
2567
+ "step": 362
2568
+ },
2569
+ {
2570
+ "epoch": 0.64,
2571
+ "grad_norm": 0.21207985281944275,
2572
+ "learning_rate": 8.955626711820438e-06,
2573
+ "loss": 0.0817,
2574
+ "step": 363
2575
+ },
2576
+ {
2577
+ "epoch": 0.64,
2578
+ "grad_norm": 0.17985820770263672,
2579
+ "learning_rate": 8.949917857996996e-06,
2580
+ "loss": 0.0798,
2581
+ "step": 364
2582
+ },
2583
+ {
2584
+ "epoch": 0.65,
2585
+ "grad_norm": 0.18554697930812836,
2586
+ "learning_rate": 8.944195273625472e-06,
2587
+ "loss": 0.0511,
2588
+ "step": 365
2589
+ },
2590
+ {
2591
+ "epoch": 0.65,
2592
+ "grad_norm": 0.41460761427879333,
2593
+ "learning_rate": 8.938458978598483e-06,
2594
+ "loss": 0.104,
2595
+ "step": 366
2596
+ },
2597
+ {
2598
+ "epoch": 0.65,
2599
+ "grad_norm": 0.1609378457069397,
2600
+ "learning_rate": 8.932708992856315e-06,
2601
+ "loss": 0.078,
2602
+ "step": 367
2603
+ },
2604
+ {
2605
+ "epoch": 0.65,
2606
+ "grad_norm": 0.5837603211402893,
2607
+ "learning_rate": 8.926945336386838e-06,
2608
+ "loss": 0.0916,
2609
+ "step": 368
2610
+ },
2611
+ {
2612
+ "epoch": 0.65,
2613
+ "grad_norm": 0.20917074382305145,
2614
+ "learning_rate": 8.921168029225448e-06,
2615
+ "loss": 0.0439,
2616
+ "step": 369
2617
+ },
2618
+ {
2619
+ "epoch": 0.65,
2620
+ "grad_norm": 0.16059182584285736,
2621
+ "learning_rate": 8.915377091454992e-06,
2622
+ "loss": 0.0622,
2623
+ "step": 370
2624
+ },
2625
+ {
2626
+ "epoch": 0.66,
2627
+ "grad_norm": 0.42982298135757446,
2628
+ "learning_rate": 8.909572543205697e-06,
2629
+ "loss": 0.0688,
2630
+ "step": 371
2631
+ },
2632
+ {
2633
+ "epoch": 0.66,
2634
+ "grad_norm": 0.204355388879776,
2635
+ "learning_rate": 8.903754404655107e-06,
2636
+ "loss": 0.0355,
2637
+ "step": 372
2638
+ },
2639
+ {
2640
+ "epoch": 0.66,
2641
+ "grad_norm": 0.1616220325231552,
2642
+ "learning_rate": 8.897922696027998e-06,
2643
+ "loss": 0.0751,
2644
+ "step": 373
2645
+ },
2646
+ {
2647
+ "epoch": 0.66,
2648
+ "grad_norm": 0.22931227087974548,
2649
+ "learning_rate": 8.892077437596333e-06,
2650
+ "loss": 0.064,
2651
+ "step": 374
2652
+ },
2653
+ {
2654
+ "epoch": 0.66,
2655
+ "grad_norm": 0.24884217977523804,
2656
+ "learning_rate": 8.886218649679162e-06,
2657
+ "loss": 0.092,
2658
+ "step": 375
2659
+ },
2660
+ {
2661
+ "epoch": 0.67,
2662
+ "grad_norm": 0.23468102514743805,
2663
+ "learning_rate": 8.880346352642575e-06,
2664
+ "loss": 0.074,
2665
+ "step": 376
2666
+ },
2667
+ {
2668
+ "epoch": 0.67,
2669
+ "grad_norm": 0.40000632405281067,
2670
+ "learning_rate": 8.874460566899616e-06,
2671
+ "loss": 0.0553,
2672
+ "step": 377
2673
+ },
2674
+ {
2675
+ "epoch": 0.67,
2676
+ "grad_norm": 0.24387776851654053,
2677
+ "learning_rate": 8.868561312910222e-06,
2678
+ "loss": 0.0469,
2679
+ "step": 378
2680
+ },
2681
+ {
2682
+ "epoch": 0.67,
2683
+ "grad_norm": 0.27059826254844666,
2684
+ "learning_rate": 8.862648611181145e-06,
2685
+ "loss": 0.0561,
2686
+ "step": 379
2687
+ },
2688
+ {
2689
+ "epoch": 0.67,
2690
+ "grad_norm": 0.2047024518251419,
2691
+ "learning_rate": 8.856722482265886e-06,
2692
+ "loss": 0.0425,
2693
+ "step": 380
2694
+ },
2695
+ {
2696
+ "epoch": 0.67,
2697
+ "grad_norm": 0.19120073318481445,
2698
+ "learning_rate": 8.850782946764618e-06,
2699
+ "loss": 0.0683,
2700
+ "step": 381
2701
+ },
2702
+ {
2703
+ "epoch": 0.68,
2704
+ "grad_norm": 0.25501665472984314,
2705
+ "learning_rate": 8.844830025324123e-06,
2706
+ "loss": 0.0625,
2707
+ "step": 382
2708
+ },
2709
+ {
2710
+ "epoch": 0.68,
2711
+ "grad_norm": 0.5250377058982849,
2712
+ "learning_rate": 8.838863738637707e-06,
2713
+ "loss": 0.0729,
2714
+ "step": 383
2715
+ },
2716
+ {
2717
+ "epoch": 0.68,
2718
+ "grad_norm": 0.18302053213119507,
2719
+ "learning_rate": 8.83288410744514e-06,
2720
+ "loss": 0.0509,
2721
+ "step": 384
2722
+ },
2723
+ {
2724
+ "epoch": 0.68,
2725
+ "grad_norm": 0.3579452633857727,
2726
+ "learning_rate": 8.826891152532579e-06,
2727
+ "loss": 0.0815,
2728
+ "step": 385
2729
+ },
2730
+ {
2731
+ "epoch": 0.68,
2732
+ "grad_norm": 0.4426077902317047,
2733
+ "learning_rate": 8.820884894732498e-06,
2734
+ "loss": 0.0868,
2735
+ "step": 386
2736
+ },
2737
+ {
2738
+ "epoch": 0.68,
2739
+ "grad_norm": 0.18046371638774872,
2740
+ "learning_rate": 8.814865354923614e-06,
2741
+ "loss": 0.0545,
2742
+ "step": 387
2743
+ },
2744
+ {
2745
+ "epoch": 0.69,
2746
+ "grad_norm": 0.17153623700141907,
2747
+ "learning_rate": 8.808832554030809e-06,
2748
+ "loss": 0.0407,
2749
+ "step": 388
2750
+ },
2751
+ {
2752
+ "epoch": 0.69,
2753
+ "grad_norm": 0.29191163182258606,
2754
+ "learning_rate": 8.802786513025069e-06,
2755
+ "loss": 0.0551,
2756
+ "step": 389
2757
+ },
2758
+ {
2759
+ "epoch": 0.69,
2760
+ "grad_norm": 0.3224787414073944,
2761
+ "learning_rate": 8.796727252923403e-06,
2762
+ "loss": 0.0435,
2763
+ "step": 390
2764
+ },
2765
+ {
2766
+ "epoch": 0.69,
2767
+ "grad_norm": 0.5621923208236694,
2768
+ "learning_rate": 8.79065479478877e-06,
2769
+ "loss": 0.0522,
2770
+ "step": 391
2771
+ },
2772
+ {
2773
+ "epoch": 0.69,
2774
+ "grad_norm": 0.3209080398082733,
2775
+ "learning_rate": 8.784569159730008e-06,
2776
+ "loss": 0.0546,
2777
+ "step": 392
2778
+ },
2779
+ {
2780
+ "epoch": 0.7,
2781
+ "grad_norm": 0.6716540455818176,
2782
+ "learning_rate": 8.778470368901761e-06,
2783
+ "loss": 0.0754,
2784
+ "step": 393
2785
+ },
2786
+ {
2787
+ "epoch": 0.7,
2788
+ "grad_norm": 0.19775713980197906,
2789
+ "learning_rate": 8.772358443504406e-06,
2790
+ "loss": 0.013,
2791
+ "step": 394
2792
+ },
2793
+ {
2794
+ "epoch": 0.7,
2795
+ "grad_norm": 0.25971564650535583,
2796
+ "learning_rate": 8.766233404783975e-06,
2797
+ "loss": 0.0344,
2798
+ "step": 395
2799
+ },
2800
+ {
2801
+ "epoch": 0.7,
2802
+ "grad_norm": 0.5102748870849609,
2803
+ "learning_rate": 8.760095274032083e-06,
2804
+ "loss": 0.0646,
2805
+ "step": 396
2806
+ },
2807
+ {
2808
+ "epoch": 0.7,
2809
+ "grad_norm": 0.30724096298217773,
2810
+ "learning_rate": 8.75394407258586e-06,
2811
+ "loss": 0.0444,
2812
+ "step": 397
2813
+ },
2814
+ {
2815
+ "epoch": 0.7,
2816
+ "grad_norm": 0.2920438051223755,
2817
+ "learning_rate": 8.747779821827868e-06,
2818
+ "loss": 0.0714,
2819
+ "step": 398
2820
+ },
2821
+ {
2822
+ "epoch": 0.71,
2823
+ "grad_norm": 0.5672811269760132,
2824
+ "learning_rate": 8.741602543186032e-06,
2825
+ "loss": 0.144,
2826
+ "step": 399
2827
+ },
2828
+ {
2829
+ "epoch": 0.71,
2830
+ "grad_norm": 0.29323235154151917,
2831
+ "learning_rate": 8.735412258133562e-06,
2832
+ "loss": 0.0467,
2833
+ "step": 400
2834
+ },
2835
+ {
2836
+ "epoch": 0.71,
2837
+ "grad_norm": 0.7952798008918762,
2838
+ "learning_rate": 8.729208988188882e-06,
2839
+ "loss": 0.1006,
2840
+ "step": 401
2841
+ },
2842
+ {
2843
+ "epoch": 0.71,
2844
+ "grad_norm": 0.1980268657207489,
2845
+ "learning_rate": 8.722992754915555e-06,
2846
+ "loss": 0.0282,
2847
+ "step": 402
2848
+ },
2849
+ {
2850
+ "epoch": 0.71,
2851
+ "grad_norm": 0.3340957462787628,
2852
+ "learning_rate": 8.716763579922203e-06,
2853
+ "loss": 0.0587,
2854
+ "step": 403
2855
+ },
2856
+ {
2857
+ "epoch": 0.71,
2858
+ "grad_norm": 0.3219829499721527,
2859
+ "learning_rate": 8.71052148486244e-06,
2860
+ "loss": 0.0484,
2861
+ "step": 404
2862
+ },
2863
+ {
2864
+ "epoch": 0.72,
2865
+ "grad_norm": 0.4473950266838074,
2866
+ "learning_rate": 8.704266491434787e-06,
2867
+ "loss": 0.0613,
2868
+ "step": 405
2869
+ },
2870
+ {
2871
+ "epoch": 0.72,
2872
+ "grad_norm": 0.4419131875038147,
2873
+ "learning_rate": 8.697998621382608e-06,
2874
+ "loss": 0.0569,
2875
+ "step": 406
2876
+ },
2877
+ {
2878
+ "epoch": 0.72,
2879
+ "grad_norm": 0.3174911141395569,
2880
+ "learning_rate": 8.69171789649402e-06,
2881
+ "loss": 0.0381,
2882
+ "step": 407
2883
+ },
2884
+ {
2885
+ "epoch": 0.72,
2886
+ "grad_norm": 0.445470929145813,
2887
+ "learning_rate": 8.685424338601833e-06,
2888
+ "loss": 0.0818,
2889
+ "step": 408
2890
+ },
2891
+ {
2892
+ "epoch": 0.72,
2893
+ "grad_norm": 0.30242660641670227,
2894
+ "learning_rate": 8.679117969583464e-06,
2895
+ "loss": 0.0733,
2896
+ "step": 409
2897
+ },
2898
+ {
2899
+ "epoch": 0.73,
2900
+ "grad_norm": 0.30104532837867737,
2901
+ "learning_rate": 8.672798811360863e-06,
2902
+ "loss": 0.0635,
2903
+ "step": 410
2904
+ },
2905
+ {
2906
+ "epoch": 0.73,
2907
+ "grad_norm": 0.4942661225795746,
2908
+ "learning_rate": 8.66646688590044e-06,
2909
+ "loss": 0.0652,
2910
+ "step": 411
2911
+ },
2912
+ {
2913
+ "epoch": 0.73,
2914
+ "grad_norm": 0.48222100734710693,
2915
+ "learning_rate": 8.660122215212976e-06,
2916
+ "loss": 0.0519,
2917
+ "step": 412
2918
+ },
2919
+ {
2920
+ "epoch": 0.73,
2921
+ "grad_norm": 0.18950317800045013,
2922
+ "learning_rate": 8.653764821353575e-06,
2923
+ "loss": 0.0372,
2924
+ "step": 413
2925
+ },
2926
+ {
2927
+ "epoch": 0.73,
2928
+ "grad_norm": 1.0479586124420166,
2929
+ "learning_rate": 8.647394726421547e-06,
2930
+ "loss": 0.1133,
2931
+ "step": 414
2932
+ },
2933
+ {
2934
+ "epoch": 0.73,
2935
+ "grad_norm": 0.9393060803413391,
2936
+ "learning_rate": 8.641011952560372e-06,
2937
+ "loss": 0.1114,
2938
+ "step": 415
2939
+ },
2940
+ {
2941
+ "epoch": 0.74,
2942
+ "grad_norm": 0.6437638998031616,
2943
+ "learning_rate": 8.63461652195759e-06,
2944
+ "loss": 0.0834,
2945
+ "step": 416
2946
+ },
2947
+ {
2948
+ "epoch": 0.74,
2949
+ "grad_norm": 0.5016691088676453,
2950
+ "learning_rate": 8.628208456844749e-06,
2951
+ "loss": 0.1051,
2952
+ "step": 417
2953
+ },
2954
+ {
2955
+ "epoch": 0.74,
2956
+ "grad_norm": 0.2746430039405823,
2957
+ "learning_rate": 8.621787779497307e-06,
2958
+ "loss": 0.0756,
2959
+ "step": 418
2960
+ },
2961
+ {
2962
+ "epoch": 0.74,
2963
+ "grad_norm": 0.1799677610397339,
2964
+ "learning_rate": 8.615354512234569e-06,
2965
+ "loss": 0.0748,
2966
+ "step": 419
2967
+ },
2968
+ {
2969
+ "epoch": 0.74,
2970
+ "grad_norm": 0.32306981086730957,
2971
+ "learning_rate": 8.608908677419606e-06,
2972
+ "loss": 0.09,
2973
+ "step": 420
2974
+ },
2975
+ {
2976
+ "epoch": 0.74,
2977
+ "grad_norm": 0.40375712513923645,
2978
+ "learning_rate": 8.602450297459173e-06,
2979
+ "loss": 0.1321,
2980
+ "step": 421
2981
+ },
2982
+ {
2983
+ "epoch": 0.75,
2984
+ "grad_norm": 0.1651470959186554,
2985
+ "learning_rate": 8.595979394803633e-06,
2986
+ "loss": 0.0613,
2987
+ "step": 422
2988
+ },
2989
+ {
2990
+ "epoch": 0.75,
2991
+ "grad_norm": 0.17097824811935425,
2992
+ "learning_rate": 8.589495991946885e-06,
2993
+ "loss": 0.0701,
2994
+ "step": 423
2995
+ },
2996
+ {
2997
+ "epoch": 0.75,
2998
+ "grad_norm": 0.5410835146903992,
2999
+ "learning_rate": 8.583000111426277e-06,
3000
+ "loss": 0.0655,
3001
+ "step": 424
3002
+ },
3003
+ {
3004
+ "epoch": 0.75,
3005
+ "grad_norm": 0.2845303416252136,
3006
+ "learning_rate": 8.576491775822527e-06,
3007
+ "loss": 0.0859,
3008
+ "step": 425
3009
+ },
3010
+ {
3011
+ "epoch": 0.75,
3012
+ "grad_norm": 0.2452799528837204,
3013
+ "learning_rate": 8.569971007759657e-06,
3014
+ "loss": 0.0538,
3015
+ "step": 426
3016
+ },
3017
+ {
3018
+ "epoch": 0.75,
3019
+ "eval_loss": 0.07323230057954788,
3020
+ "eval_runtime": 14.7111,
3021
+ "eval_samples_per_second": 32.356,
3022
+ "eval_steps_per_second": 8.089,
3023
+ "step": 426
3024
+ },
3025
+ {
3026
+ "epoch": 0.76,
3027
+ "grad_norm": 0.6456173062324524,
3028
+ "learning_rate": 8.563437829904904e-06,
3029
+ "loss": 0.1131,
3030
+ "step": 427
3031
+ },
3032
+ {
3033
+ "epoch": 0.76,
3034
+ "grad_norm": 0.3903690278530121,
3035
+ "learning_rate": 8.556892264968639e-06,
3036
+ "loss": 0.0997,
3037
+ "step": 428
3038
+ },
3039
+ {
3040
+ "epoch": 0.76,
3041
+ "grad_norm": 0.33470049500465393,
3042
+ "learning_rate": 8.550334335704298e-06,
3043
+ "loss": 0.0987,
3044
+ "step": 429
3045
+ },
3046
+ {
3047
+ "epoch": 0.76,
3048
+ "grad_norm": 0.1498459130525589,
3049
+ "learning_rate": 8.543764064908295e-06,
3050
+ "loss": 0.0524,
3051
+ "step": 430
3052
+ },
3053
+ {
3054
+ "epoch": 0.76,
3055
+ "grad_norm": 0.21974940598011017,
3056
+ "learning_rate": 8.537181475419944e-06,
3057
+ "loss": 0.0789,
3058
+ "step": 431
3059
+ },
3060
+ {
3061
+ "epoch": 0.76,
3062
+ "grad_norm": 0.16694916784763336,
3063
+ "learning_rate": 8.530586590121384e-06,
3064
+ "loss": 0.0731,
3065
+ "step": 432
3066
+ },
3067
+ {
3068
+ "epoch": 0.77,
3069
+ "grad_norm": 0.12150876969099045,
3070
+ "learning_rate": 8.523979431937493e-06,
3071
+ "loss": 0.0694,
3072
+ "step": 433
3073
+ },
3074
+ {
3075
+ "epoch": 0.77,
3076
+ "grad_norm": 0.17073531448841095,
3077
+ "learning_rate": 8.51736002383581e-06,
3078
+ "loss": 0.0698,
3079
+ "step": 434
3080
+ },
3081
+ {
3082
+ "epoch": 0.77,
3083
+ "grad_norm": 0.2708394527435303,
3084
+ "learning_rate": 8.510728388826464e-06,
3085
+ "loss": 0.0739,
3086
+ "step": 435
3087
+ },
3088
+ {
3089
+ "epoch": 0.77,
3090
+ "grad_norm": 0.1602393388748169,
3091
+ "learning_rate": 8.504084549962079e-06,
3092
+ "loss": 0.0709,
3093
+ "step": 436
3094
+ },
3095
+ {
3096
+ "epoch": 0.77,
3097
+ "grad_norm": 0.2071549892425537,
3098
+ "learning_rate": 8.497428530337707e-06,
3099
+ "loss": 0.0757,
3100
+ "step": 437
3101
+ },
3102
+ {
3103
+ "epoch": 0.77,
3104
+ "grad_norm": 0.1717323213815689,
3105
+ "learning_rate": 8.490760353090738e-06,
3106
+ "loss": 0.0802,
3107
+ "step": 438
3108
+ },
3109
+ {
3110
+ "epoch": 0.78,
3111
+ "grad_norm": 0.2539728879928589,
3112
+ "learning_rate": 8.484080041400827e-06,
3113
+ "loss": 0.0852,
3114
+ "step": 439
3115
+ },
3116
+ {
3117
+ "epoch": 0.78,
3118
+ "grad_norm": 0.15313653647899628,
3119
+ "learning_rate": 8.477387618489808e-06,
3120
+ "loss": 0.0788,
3121
+ "step": 440
3122
+ },
3123
+ {
3124
+ "epoch": 0.78,
3125
+ "grad_norm": 0.20286281406879425,
3126
+ "learning_rate": 8.470683107621616e-06,
3127
+ "loss": 0.0423,
3128
+ "step": 441
3129
+ },
3130
+ {
3131
+ "epoch": 0.78,
3132
+ "grad_norm": 0.21172399818897247,
3133
+ "learning_rate": 8.463966532102207e-06,
3134
+ "loss": 0.0575,
3135
+ "step": 442
3136
+ },
3137
+ {
3138
+ "epoch": 0.78,
3139
+ "grad_norm": 0.23021037876605988,
3140
+ "learning_rate": 8.457237915279477e-06,
3141
+ "loss": 0.0774,
3142
+ "step": 443
3143
+ },
3144
+ {
3145
+ "epoch": 0.79,
3146
+ "grad_norm": 0.14592242240905762,
3147
+ "learning_rate": 8.450497280543174e-06,
3148
+ "loss": 0.0699,
3149
+ "step": 444
3150
+ },
3151
+ {
3152
+ "epoch": 0.79,
3153
+ "grad_norm": 0.2122061848640442,
3154
+ "learning_rate": 8.443744651324828e-06,
3155
+ "loss": 0.0801,
3156
+ "step": 445
3157
+ },
3158
+ {
3159
+ "epoch": 0.79,
3160
+ "grad_norm": 0.21682047843933105,
3161
+ "learning_rate": 8.43698005109766e-06,
3162
+ "loss": 0.0478,
3163
+ "step": 446
3164
+ },
3165
+ {
3166
+ "epoch": 0.79,
3167
+ "grad_norm": 0.19426396489143372,
3168
+ "learning_rate": 8.430203503376506e-06,
3169
+ "loss": 0.0508,
3170
+ "step": 447
3171
+ },
3172
+ {
3173
+ "epoch": 0.79,
3174
+ "grad_norm": 0.14614954590797424,
3175
+ "learning_rate": 8.423415031717734e-06,
3176
+ "loss": 0.0712,
3177
+ "step": 448
3178
+ },
3179
+ {
3180
+ "epoch": 0.79,
3181
+ "grad_norm": 0.1340399831533432,
3182
+ "learning_rate": 8.416614659719158e-06,
3183
+ "loss": 0.0723,
3184
+ "step": 449
3185
+ },
3186
+ {
3187
+ "epoch": 0.8,
3188
+ "grad_norm": 0.16521310806274414,
3189
+ "learning_rate": 8.409802411019962e-06,
3190
+ "loss": 0.0486,
3191
+ "step": 450
3192
+ },
3193
+ {
3194
+ "epoch": 0.8,
3195
+ "grad_norm": 0.3560049533843994,
3196
+ "learning_rate": 8.40297830930062e-06,
3197
+ "loss": 0.0868,
3198
+ "step": 451
3199
+ },
3200
+ {
3201
+ "epoch": 0.8,
3202
+ "grad_norm": 0.1964522898197174,
3203
+ "learning_rate": 8.396142378282799e-06,
3204
+ "loss": 0.046,
3205
+ "step": 452
3206
+ },
3207
+ {
3208
+ "epoch": 0.8,
3209
+ "grad_norm": 0.175230011343956,
3210
+ "learning_rate": 8.389294641729293e-06,
3211
+ "loss": 0.0659,
3212
+ "step": 453
3213
+ },
3214
+ {
3215
+ "epoch": 0.8,
3216
+ "grad_norm": 0.22042769193649292,
3217
+ "learning_rate": 8.382435123443934e-06,
3218
+ "loss": 0.0746,
3219
+ "step": 454
3220
+ },
3221
+ {
3222
+ "epoch": 0.8,
3223
+ "grad_norm": 0.19862250983715057,
3224
+ "learning_rate": 8.375563847271506e-06,
3225
+ "loss": 0.055,
3226
+ "step": 455
3227
+ },
3228
+ {
3229
+ "epoch": 0.81,
3230
+ "grad_norm": 0.24993905425071716,
3231
+ "learning_rate": 8.36868083709767e-06,
3232
+ "loss": 0.0858,
3233
+ "step": 456
3234
+ },
3235
+ {
3236
+ "epoch": 0.81,
3237
+ "grad_norm": 0.14945238828659058,
3238
+ "learning_rate": 8.361786116848871e-06,
3239
+ "loss": 0.0573,
3240
+ "step": 457
3241
+ },
3242
+ {
3243
+ "epoch": 0.81,
3244
+ "grad_norm": 0.43160539865493774,
3245
+ "learning_rate": 8.354879710492264e-06,
3246
+ "loss": 0.094,
3247
+ "step": 458
3248
+ },
3249
+ {
3250
+ "epoch": 0.81,
3251
+ "grad_norm": 0.5086230635643005,
3252
+ "learning_rate": 8.347961642035624e-06,
3253
+ "loss": 0.0956,
3254
+ "step": 459
3255
+ },
3256
+ {
3257
+ "epoch": 0.81,
3258
+ "grad_norm": 0.1694391518831253,
3259
+ "learning_rate": 8.341031935527267e-06,
3260
+ "loss": 0.0539,
3261
+ "step": 460
3262
+ },
3263
+ {
3264
+ "epoch": 0.82,
3265
+ "grad_norm": 0.2055732011795044,
3266
+ "learning_rate": 8.334090615055966e-06,
3267
+ "loss": 0.0564,
3268
+ "step": 461
3269
+ },
3270
+ {
3271
+ "epoch": 0.82,
3272
+ "grad_norm": 0.14689050614833832,
3273
+ "learning_rate": 8.327137704750863e-06,
3274
+ "loss": 0.0554,
3275
+ "step": 462
3276
+ },
3277
+ {
3278
+ "epoch": 0.82,
3279
+ "grad_norm": 0.3445436656475067,
3280
+ "learning_rate": 8.32017322878139e-06,
3281
+ "loss": 0.1029,
3282
+ "step": 463
3283
+ },
3284
+ {
3285
+ "epoch": 0.82,
3286
+ "grad_norm": 0.1985045075416565,
3287
+ "learning_rate": 8.31319721135718e-06,
3288
+ "loss": 0.0703,
3289
+ "step": 464
3290
+ },
3291
+ {
3292
+ "epoch": 0.82,
3293
+ "grad_norm": 0.24056944251060486,
3294
+ "learning_rate": 8.306209676727994e-06,
3295
+ "loss": 0.0909,
3296
+ "step": 465
3297
+ },
3298
+ {
3299
+ "epoch": 0.82,
3300
+ "grad_norm": 0.20218642055988312,
3301
+ "learning_rate": 8.29921064918362e-06,
3302
+ "loss": 0.0658,
3303
+ "step": 466
3304
+ },
3305
+ {
3306
+ "epoch": 0.83,
3307
+ "grad_norm": 0.2052248865365982,
3308
+ "learning_rate": 8.2922001530538e-06,
3309
+ "loss": 0.0522,
3310
+ "step": 467
3311
+ },
3312
+ {
3313
+ "epoch": 0.83,
3314
+ "grad_norm": 0.2361009120941162,
3315
+ "learning_rate": 8.285178212708143e-06,
3316
+ "loss": 0.0674,
3317
+ "step": 468
3318
+ },
3319
+ {
3320
+ "epoch": 0.83,
3321
+ "grad_norm": 0.30261772871017456,
3322
+ "learning_rate": 8.278144852556042e-06,
3323
+ "loss": 0.0672,
3324
+ "step": 469
3325
+ },
3326
+ {
3327
+ "epoch": 0.83,
3328
+ "grad_norm": 0.3114418685436249,
3329
+ "learning_rate": 8.271100097046585e-06,
3330
+ "loss": 0.0762,
3331
+ "step": 470
3332
+ },
3333
+ {
3334
+ "epoch": 0.83,
3335
+ "grad_norm": 0.4094521701335907,
3336
+ "learning_rate": 8.26404397066847e-06,
3337
+ "loss": 0.0725,
3338
+ "step": 471
3339
+ },
3340
+ {
3341
+ "epoch": 0.84,
3342
+ "grad_norm": 0.23902684450149536,
3343
+ "learning_rate": 8.256976497949924e-06,
3344
+ "loss": 0.0408,
3345
+ "step": 472
3346
+ },
3347
+ {
3348
+ "epoch": 0.84,
3349
+ "grad_norm": 0.2393728494644165,
3350
+ "learning_rate": 8.249897703458619e-06,
3351
+ "loss": 0.0608,
3352
+ "step": 473
3353
+ },
3354
+ {
3355
+ "epoch": 0.84,
3356
+ "grad_norm": 0.24134708940982819,
3357
+ "learning_rate": 8.242807611801578e-06,
3358
+ "loss": 0.0369,
3359
+ "step": 474
3360
+ },
3361
+ {
3362
+ "epoch": 0.84,
3363
+ "grad_norm": 0.14594919979572296,
3364
+ "learning_rate": 8.235706247625098e-06,
3365
+ "loss": 0.0261,
3366
+ "step": 475
3367
+ },
3368
+ {
3369
+ "epoch": 0.84,
3370
+ "grad_norm": 0.32239043712615967,
3371
+ "learning_rate": 8.228593635614659e-06,
3372
+ "loss": 0.1011,
3373
+ "step": 476
3374
+ },
3375
+ {
3376
+ "epoch": 0.84,
3377
+ "grad_norm": 0.2879891097545624,
3378
+ "learning_rate": 8.22146980049484e-06,
3379
+ "loss": 0.0742,
3380
+ "step": 477
3381
+ },
3382
+ {
3383
+ "epoch": 0.85,
3384
+ "grad_norm": 0.5778201818466187,
3385
+ "learning_rate": 8.21433476702924e-06,
3386
+ "loss": 0.1146,
3387
+ "step": 478
3388
+ },
3389
+ {
3390
+ "epoch": 0.85,
3391
+ "grad_norm": 0.214900940656662,
3392
+ "learning_rate": 8.207188560020374e-06,
3393
+ "loss": 0.037,
3394
+ "step": 479
3395
+ },
3396
+ {
3397
+ "epoch": 0.85,
3398
+ "grad_norm": 0.22797343134880066,
3399
+ "learning_rate": 8.200031204309604e-06,
3400
+ "loss": 0.0595,
3401
+ "step": 480
3402
+ },
3403
+ {
3404
+ "epoch": 0.85,
3405
+ "grad_norm": 0.19148996472358704,
3406
+ "learning_rate": 8.192862724777052e-06,
3407
+ "loss": 0.0339,
3408
+ "step": 481
3409
+ },
3410
+ {
3411
+ "epoch": 0.85,
3412
+ "grad_norm": 0.15512730181217194,
3413
+ "learning_rate": 8.185683146341496e-06,
3414
+ "loss": 0.051,
3415
+ "step": 482
3416
+ },
3417
+ {
3418
+ "epoch": 0.85,
3419
+ "grad_norm": 0.20564667880535126,
3420
+ "learning_rate": 8.178492493960309e-06,
3421
+ "loss": 0.0453,
3422
+ "step": 483
3423
+ },
3424
+ {
3425
+ "epoch": 0.86,
3426
+ "grad_norm": 0.3061021566390991,
3427
+ "learning_rate": 8.171290792629348e-06,
3428
+ "loss": 0.033,
3429
+ "step": 484
3430
+ },
3431
+ {
3432
+ "epoch": 0.86,
3433
+ "grad_norm": 0.23765882849693298,
3434
+ "learning_rate": 8.16407806738288e-06,
3435
+ "loss": 0.0614,
3436
+ "step": 485
3437
+ },
3438
+ {
3439
+ "epoch": 0.86,
3440
+ "grad_norm": 0.3384253978729248,
3441
+ "learning_rate": 8.156854343293501e-06,
3442
+ "loss": 0.0662,
3443
+ "step": 486
3444
+ },
3445
+ {
3446
+ "epoch": 0.86,
3447
+ "grad_norm": 0.1890600174665451,
3448
+ "learning_rate": 8.149619645472031e-06,
3449
+ "loss": 0.0495,
3450
+ "step": 487
3451
+ },
3452
+ {
3453
+ "epoch": 0.86,
3454
+ "grad_norm": 0.30018725991249084,
3455
+ "learning_rate": 8.14237399906744e-06,
3456
+ "loss": 0.0722,
3457
+ "step": 488
3458
+ },
3459
+ {
3460
+ "epoch": 0.87,
3461
+ "grad_norm": 0.31263217329978943,
3462
+ "learning_rate": 8.135117429266756e-06,
3463
+ "loss": 0.0693,
3464
+ "step": 489
3465
+ },
3466
+ {
3467
+ "epoch": 0.87,
3468
+ "grad_norm": 0.18034443259239197,
3469
+ "learning_rate": 8.127849961294984e-06,
3470
+ "loss": 0.0409,
3471
+ "step": 490
3472
+ },
3473
+ {
3474
+ "epoch": 0.87,
3475
+ "grad_norm": 0.23813746869564056,
3476
+ "learning_rate": 8.120571620415007e-06,
3477
+ "loss": 0.0433,
3478
+ "step": 491
3479
+ },
3480
+ {
3481
+ "epoch": 0.87,
3482
+ "grad_norm": 0.23636382818222046,
3483
+ "learning_rate": 8.113282431927502e-06,
3484
+ "loss": 0.0544,
3485
+ "step": 492
3486
+ },
3487
+ {
3488
+ "epoch": 0.87,
3489
+ "grad_norm": 0.5150755047798157,
3490
+ "learning_rate": 8.10598242117086e-06,
3491
+ "loss": 0.1072,
3492
+ "step": 493
3493
+ },
3494
+ {
3495
+ "epoch": 0.87,
3496
+ "grad_norm": 0.3001669645309448,
3497
+ "learning_rate": 8.09867161352109e-06,
3498
+ "loss": 0.0414,
3499
+ "step": 494
3500
+ },
3501
+ {
3502
+ "epoch": 0.88,
3503
+ "grad_norm": 0.228012353181839,
3504
+ "learning_rate": 8.091350034391732e-06,
3505
+ "loss": 0.0701,
3506
+ "step": 495
3507
+ },
3508
+ {
3509
+ "epoch": 0.88,
3510
+ "grad_norm": 0.3816164433956146,
3511
+ "learning_rate": 8.084017709233767e-06,
3512
+ "loss": 0.0723,
3513
+ "step": 496
3514
+ },
3515
+ {
3516
+ "epoch": 0.88,
3517
+ "grad_norm": 0.32659652829170227,
3518
+ "learning_rate": 8.076674663535537e-06,
3519
+ "loss": 0.0697,
3520
+ "step": 497
3521
+ },
3522
+ {
3523
+ "epoch": 0.88,
3524
+ "grad_norm": 0.48343512415885925,
3525
+ "learning_rate": 8.069320922822644e-06,
3526
+ "loss": 0.1034,
3527
+ "step": 498
3528
+ },
3529
+ {
3530
+ "epoch": 0.88,
3531
+ "grad_norm": 0.29286321997642517,
3532
+ "learning_rate": 8.061956512657872e-06,
3533
+ "loss": 0.075,
3534
+ "step": 499
3535
+ },
3536
+ {
3537
+ "epoch": 0.88,
3538
+ "grad_norm": 0.4552519917488098,
3539
+ "learning_rate": 8.05458145864109e-06,
3540
+ "loss": 0.0568,
3541
+ "step": 500
3542
+ },
3543
+ {
3544
+ "epoch": 0.89,
3545
+ "grad_norm": 0.3469892740249634,
3546
+ "learning_rate": 8.047195786409172e-06,
3547
+ "loss": 0.0661,
3548
+ "step": 501
3549
+ },
3550
+ {
3551
+ "epoch": 0.89,
3552
+ "grad_norm": 0.1452968716621399,
3553
+ "learning_rate": 8.039799521635896e-06,
3554
+ "loss": 0.0226,
3555
+ "step": 502
3556
+ },
3557
+ {
3558
+ "epoch": 0.89,
3559
+ "grad_norm": 0.25091221928596497,
3560
+ "learning_rate": 8.032392690031868e-06,
3561
+ "loss": 0.0486,
3562
+ "step": 503
3563
+ },
3564
+ {
3565
+ "epoch": 0.89,
3566
+ "grad_norm": 0.1830379068851471,
3567
+ "learning_rate": 8.024975317344421e-06,
3568
+ "loss": 0.0448,
3569
+ "step": 504
3570
+ },
3571
+ {
3572
+ "epoch": 0.89,
3573
+ "grad_norm": 0.32811227440834045,
3574
+ "learning_rate": 8.017547429357532e-06,
3575
+ "loss": 0.055,
3576
+ "step": 505
3577
+ },
3578
+ {
3579
+ "epoch": 0.9,
3580
+ "grad_norm": 0.24694731831550598,
3581
+ "learning_rate": 8.010109051891731e-06,
3582
+ "loss": 0.0614,
3583
+ "step": 506
3584
+ },
3585
+ {
3586
+ "epoch": 0.9,
3587
+ "grad_norm": 0.3512776792049408,
3588
+ "learning_rate": 8.002660210804011e-06,
3589
+ "loss": 0.0699,
3590
+ "step": 507
3591
+ },
3592
+ {
3593
+ "epoch": 0.9,
3594
+ "grad_norm": 0.2562338709831238,
3595
+ "learning_rate": 7.995200931987744e-06,
3596
+ "loss": 0.0726,
3597
+ "step": 508
3598
+ },
3599
+ {
3600
+ "epoch": 0.9,
3601
+ "grad_norm": 0.38721486926078796,
3602
+ "learning_rate": 7.987731241372572e-06,
3603
+ "loss": 0.0798,
3604
+ "step": 509
3605
+ },
3606
+ {
3607
+ "epoch": 0.9,
3608
+ "grad_norm": 0.24697037041187286,
3609
+ "learning_rate": 7.980251164924342e-06,
3610
+ "loss": 0.0657,
3611
+ "step": 510
3612
+ },
3613
+ {
3614
+ "epoch": 0.9,
3615
+ "grad_norm": 0.5245312452316284,
3616
+ "learning_rate": 7.972760728644995e-06,
3617
+ "loss": 0.0575,
3618
+ "step": 511
3619
+ },
3620
+ {
3621
+ "epoch": 0.91,
3622
+ "grad_norm": 0.29805997014045715,
3623
+ "learning_rate": 7.965259958572495e-06,
3624
+ "loss": 0.052,
3625
+ "step": 512
3626
+ },
3627
+ {
3628
+ "epoch": 0.91,
3629
+ "grad_norm": 0.21135053038597107,
3630
+ "learning_rate": 7.957748880780722e-06,
3631
+ "loss": 0.0378,
3632
+ "step": 513
3633
+ },
3634
+ {
3635
+ "epoch": 0.91,
3636
+ "grad_norm": 0.23149773478507996,
3637
+ "learning_rate": 7.950227521379382e-06,
3638
+ "loss": 0.0726,
3639
+ "step": 514
3640
+ },
3641
+ {
3642
+ "epoch": 0.91,
3643
+ "grad_norm": 0.19880171120166779,
3644
+ "learning_rate": 7.94269590651393e-06,
3645
+ "loss": 0.0714,
3646
+ "step": 515
3647
+ },
3648
+ {
3649
+ "epoch": 0.91,
3650
+ "grad_norm": 0.28021228313446045,
3651
+ "learning_rate": 7.935154062365468e-06,
3652
+ "loss": 0.0634,
3653
+ "step": 516
3654
+ },
3655
+ {
3656
+ "epoch": 0.91,
3657
+ "grad_norm": 0.21841171383857727,
3658
+ "learning_rate": 7.927602015150655e-06,
3659
+ "loss": 0.0625,
3660
+ "step": 517
3661
+ },
3662
+ {
3663
+ "epoch": 0.92,
3664
+ "grad_norm": 0.1774914562702179,
3665
+ "learning_rate": 7.920039791121617e-06,
3666
+ "loss": 0.0321,
3667
+ "step": 518
3668
+ },
3669
+ {
3670
+ "epoch": 0.92,
3671
+ "grad_norm": 0.38757917284965515,
3672
+ "learning_rate": 7.91246741656586e-06,
3673
+ "loss": 0.1069,
3674
+ "step": 519
3675
+ },
3676
+ {
3677
+ "epoch": 0.92,
3678
+ "grad_norm": 0.19643576443195343,
3679
+ "learning_rate": 7.904884917806174e-06,
3680
+ "loss": 0.0409,
3681
+ "step": 520
3682
+ },
3683
+ {
3684
+ "epoch": 0.92,
3685
+ "grad_norm": 0.2885828912258148,
3686
+ "learning_rate": 7.897292321200538e-06,
3687
+ "loss": 0.0514,
3688
+ "step": 521
3689
+ },
3690
+ {
3691
+ "epoch": 0.92,
3692
+ "grad_norm": 0.4019085168838501,
3693
+ "learning_rate": 7.889689653142037e-06,
3694
+ "loss": 0.089,
3695
+ "step": 522
3696
+ },
3697
+ {
3698
+ "epoch": 0.93,
3699
+ "grad_norm": 0.350379079580307,
3700
+ "learning_rate": 7.882076940058764e-06,
3701
+ "loss": 0.0505,
3702
+ "step": 523
3703
+ },
3704
+ {
3705
+ "epoch": 0.93,
3706
+ "grad_norm": 0.3123965859413147,
3707
+ "learning_rate": 7.87445420841373e-06,
3708
+ "loss": 0.0555,
3709
+ "step": 524
3710
+ },
3711
+ {
3712
+ "epoch": 0.93,
3713
+ "grad_norm": 0.21883922815322876,
3714
+ "learning_rate": 7.866821484704777e-06,
3715
+ "loss": 0.0439,
3716
+ "step": 525
3717
+ },
3718
+ {
3719
+ "epoch": 0.93,
3720
+ "grad_norm": 0.2795931100845337,
3721
+ "learning_rate": 7.859178795464473e-06,
3722
+ "loss": 0.0757,
3723
+ "step": 526
3724
+ },
3725
+ {
3726
+ "epoch": 0.93,
3727
+ "grad_norm": 0.3848627507686615,
3728
+ "learning_rate": 7.851526167260034e-06,
3729
+ "loss": 0.0995,
3730
+ "step": 527
3731
+ },
3732
+ {
3733
+ "epoch": 0.93,
3734
+ "grad_norm": 0.5650475025177002,
3735
+ "learning_rate": 7.843863626693221e-06,
3736
+ "loss": 0.0956,
3737
+ "step": 528
3738
+ },
3739
+ {
3740
+ "epoch": 0.94,
3741
+ "grad_norm": 0.20236073434352875,
3742
+ "learning_rate": 7.836191200400257e-06,
3743
+ "loss": 0.0629,
3744
+ "step": 529
3745
+ },
3746
+ {
3747
+ "epoch": 0.94,
3748
+ "grad_norm": 0.19835765659809113,
3749
+ "learning_rate": 7.828508915051724e-06,
3750
+ "loss": 0.0661,
3751
+ "step": 530
3752
+ },
3753
+ {
3754
+ "epoch": 0.94,
3755
+ "grad_norm": 0.2083461880683899,
3756
+ "learning_rate": 7.82081679735248e-06,
3757
+ "loss": 0.051,
3758
+ "step": 531
3759
+ },
3760
+ {
3761
+ "epoch": 0.94,
3762
+ "grad_norm": 0.4042919874191284,
3763
+ "learning_rate": 7.813114874041558e-06,
3764
+ "loss": 0.0736,
3765
+ "step": 532
3766
+ },
3767
+ {
3768
+ "epoch": 0.94,
3769
+ "grad_norm": 0.20774157345294952,
3770
+ "learning_rate": 7.80540317189208e-06,
3771
+ "loss": 0.0578,
3772
+ "step": 533
3773
+ },
3774
+ {
3775
+ "epoch": 0.94,
3776
+ "grad_norm": 0.20473290979862213,
3777
+ "learning_rate": 7.797681717711162e-06,
3778
+ "loss": 0.0471,
3779
+ "step": 534
3780
+ },
3781
+ {
3782
+ "epoch": 0.95,
3783
+ "grad_norm": 0.2514810562133789,
3784
+ "learning_rate": 7.789950538339813e-06,
3785
+ "loss": 0.0665,
3786
+ "step": 535
3787
+ },
3788
+ {
3789
+ "epoch": 0.95,
3790
+ "grad_norm": 0.43802833557128906,
3791
+ "learning_rate": 7.782209660652855e-06,
3792
+ "loss": 0.087,
3793
+ "step": 536
3794
+ },
3795
+ {
3796
+ "epoch": 0.95,
3797
+ "grad_norm": 0.2503105103969574,
3798
+ "learning_rate": 7.774459111558821e-06,
3799
+ "loss": 0.0819,
3800
+ "step": 537
3801
+ },
3802
+ {
3803
+ "epoch": 0.95,
3804
+ "grad_norm": 0.16841083765029907,
3805
+ "learning_rate": 7.766698917999862e-06,
3806
+ "loss": 0.0505,
3807
+ "step": 538
3808
+ },
3809
+ {
3810
+ "epoch": 0.95,
3811
+ "grad_norm": 0.3313782513141632,
3812
+ "learning_rate": 7.758929106951656e-06,
3813
+ "loss": 0.0713,
3814
+ "step": 539
3815
+ },
3816
+ {
3817
+ "epoch": 0.96,
3818
+ "grad_norm": 0.16334685683250427,
3819
+ "learning_rate": 7.751149705423313e-06,
3820
+ "loss": 0.044,
3821
+ "step": 540
3822
+ },
3823
+ {
3824
+ "epoch": 0.96,
3825
+ "grad_norm": 0.4028722941875458,
3826
+ "learning_rate": 7.743360740457278e-06,
3827
+ "loss": 0.0847,
3828
+ "step": 541
3829
+ },
3830
+ {
3831
+ "epoch": 0.96,
3832
+ "grad_norm": 0.24219095706939697,
3833
+ "learning_rate": 7.735562239129248e-06,
3834
+ "loss": 0.0848,
3835
+ "step": 542
3836
+ },
3837
+ {
3838
+ "epoch": 0.96,
3839
+ "grad_norm": 0.19837279617786407,
3840
+ "learning_rate": 7.72775422854806e-06,
3841
+ "loss": 0.0331,
3842
+ "step": 543
3843
+ },
3844
+ {
3845
+ "epoch": 0.96,
3846
+ "grad_norm": 0.21855801343917847,
3847
+ "learning_rate": 7.719936735855611e-06,
3848
+ "loss": 0.0473,
3849
+ "step": 544
3850
+ },
3851
+ {
3852
+ "epoch": 0.96,
3853
+ "grad_norm": 0.1909436583518982,
3854
+ "learning_rate": 7.712109788226763e-06,
3855
+ "loss": 0.0694,
3856
+ "step": 545
3857
+ },
3858
+ {
3859
+ "epoch": 0.97,
3860
+ "grad_norm": 0.37223267555236816,
3861
+ "learning_rate": 7.704273412869239e-06,
3862
+ "loss": 0.077,
3863
+ "step": 546
3864
+ },
3865
+ {
3866
+ "epoch": 0.97,
3867
+ "grad_norm": 0.33873534202575684,
3868
+ "learning_rate": 7.696427637023537e-06,
3869
+ "loss": 0.0391,
3870
+ "step": 547
3871
+ },
3872
+ {
3873
+ "epoch": 0.97,
3874
+ "grad_norm": 0.22075894474983215,
3875
+ "learning_rate": 7.688572487962836e-06,
3876
+ "loss": 0.0363,
3877
+ "step": 548
3878
+ },
3879
+ {
3880
+ "epoch": 0.97,
3881
+ "grad_norm": 0.3139945864677429,
3882
+ "learning_rate": 7.680707992992889e-06,
3883
+ "loss": 0.0676,
3884
+ "step": 549
3885
+ },
3886
+ {
3887
+ "epoch": 0.97,
3888
+ "grad_norm": 0.24971792101860046,
3889
+ "learning_rate": 7.672834179451943e-06,
3890
+ "loss": 0.0561,
3891
+ "step": 550
3892
+ },
3893
+ {
3894
+ "epoch": 0.97,
3895
+ "grad_norm": 0.2864936292171478,
3896
+ "learning_rate": 7.664951074710638e-06,
3897
+ "loss": 0.0885,
3898
+ "step": 551
3899
+ },
3900
+ {
3901
+ "epoch": 0.98,
3902
+ "grad_norm": 0.32206228375434875,
3903
+ "learning_rate": 7.657058706171912e-06,
3904
+ "loss": 0.065,
3905
+ "step": 552
3906
+ },
3907
+ {
3908
+ "epoch": 0.98,
3909
+ "grad_norm": 0.28918203711509705,
3910
+ "learning_rate": 7.649157101270904e-06,
3911
+ "loss": 0.108,
3912
+ "step": 553
3913
+ },
3914
+ {
3915
+ "epoch": 0.98,
3916
+ "grad_norm": 0.2585963308811188,
3917
+ "learning_rate": 7.641246287474856e-06,
3918
+ "loss": 0.0536,
3919
+ "step": 554
3920
+ },
3921
+ {
3922
+ "epoch": 0.98,
3923
+ "grad_norm": 0.4212508797645569,
3924
+ "learning_rate": 7.633326292283028e-06,
3925
+ "loss": 0.0857,
3926
+ "step": 555
3927
+ },
3928
+ {
3929
+ "epoch": 0.98,
3930
+ "grad_norm": 0.1916050761938095,
3931
+ "learning_rate": 7.625397143226596e-06,
3932
+ "loss": 0.0597,
3933
+ "step": 556
3934
+ },
3935
+ {
3936
+ "epoch": 0.99,
3937
+ "grad_norm": 0.678855299949646,
3938
+ "learning_rate": 7.617458867868554e-06,
3939
+ "loss": 0.0759,
3940
+ "step": 557
3941
+ },
3942
+ {
3943
+ "epoch": 0.99,
3944
+ "grad_norm": 0.3328985273838043,
3945
+ "learning_rate": 7.609511493803616e-06,
3946
+ "loss": 0.0545,
3947
+ "step": 558
3948
+ },
3949
+ {
3950
+ "epoch": 0.99,
3951
+ "grad_norm": 0.2722048759460449,
3952
+ "learning_rate": 7.601555048658133e-06,
3953
+ "loss": 0.0633,
3954
+ "step": 559
3955
+ },
3956
+ {
3957
+ "epoch": 0.99,
3958
+ "grad_norm": 0.2508256733417511,
3959
+ "learning_rate": 7.593589560089984e-06,
3960
+ "loss": 0.0571,
3961
+ "step": 560
3962
+ },
3963
+ {
3964
+ "epoch": 0.99,
3965
+ "grad_norm": 0.49203789234161377,
3966
+ "learning_rate": 7.585615055788484e-06,
3967
+ "loss": 0.0834,
3968
+ "step": 561
3969
+ },
3970
+ {
3971
+ "epoch": 0.99,
3972
+ "grad_norm": 0.2127446085214615,
3973
+ "learning_rate": 7.577631563474291e-06,
3974
+ "loss": 0.0658,
3975
+ "step": 562
3976
+ },
3977
+ {
3978
+ "epoch": 1.0,
3979
+ "grad_norm": 0.6191400289535522,
3980
+ "learning_rate": 7.569639110899303e-06,
3981
+ "loss": 0.0848,
3982
+ "step": 563
3983
+ },
3984
+ {
3985
+ "epoch": 1.0,
3986
+ "grad_norm": 0.22974306344985962,
3987
+ "learning_rate": 7.561637725846568e-06,
3988
+ "loss": 0.0493,
3989
+ "step": 564
3990
+ },
3991
+ {
3992
+ "epoch": 1.0,
3993
+ "grad_norm": 0.6743472814559937,
3994
+ "learning_rate": 7.553627436130183e-06,
3995
+ "loss": 0.139,
3996
+ "step": 565
3997
+ }
3998
+ ],
3999
+ "logging_steps": 1,
4000
+ "max_steps": 1695,
4001
+ "num_input_tokens_seen": 0,
4002
+ "num_train_epochs": 3,
4003
+ "save_steps": 565,
4004
+ "total_flos": 5.277457624072192e+16,
4005
+ "train_batch_size": 2,
4006
+ "trial_name": null,
4007
+ "trial_params": null
4008
+ }
checkpoint-565/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2667f02973c48c9daa1abbdc506826bb40abce66f6990081fb40359affcf7486
3
+ size 5752
checkpoint-565/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen1.5-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151643,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 28,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 32,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_storage": "uint8",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": 32768,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.40.0.dev0",
39
+ "use_cache": false,
40
+ "use_sliding_window": false,
41
+ "vocab_size": 151936
42
+ }