File size: 2,802 Bytes
148a08b
 
 
 
 
 
 
 
 
 
 
 
f9d10be
 
 
 
b76d647
f9d10be
ae1da71
148a08b
ae1da71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6fc8bd
 
 
ae1da71
 
 
 
 
f9d10be
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: llama3
language:
- tr
pipeline_tag: text-generation
base_model: meta-llama/Meta-Llama-3-8B
tags:
- Turkish
- turkish
- Llama
- Llama3
---
<img src="./CosmosLlaMa.png" width="400px"/>

# Cosmos LLaMa

This model is a fully fine-tuned version of the LLaMA-3 8B model with a 30GB Turkish dataset.

The Cosmos LLaMa is designed for text generation tasks, providing the ability to continue a given text snippet in a coherent and contextually relevant manner. Due to the diverse nature of the training data, which includes websites, books, and other text sources, this model can exhibit biases. Users should be aware of these biases and use the model responsibly.

## Example Usage

Here is an example of how to use the model in colab:

```python
!pip install -U accelerate bitsandbytes
```

```python
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
import time

model_name = "ytu-ce-cosmos/Turkish-Llama-8b-v0.1"

bnb_config = BitsAndBytesConfig(
    load_in_8bit=True,
    bnb_8bit_compute_dtype=torch.bfloat16,
    load_in_8bit_fp32_cpu_offload=True,
    device_map = 'auto'
)

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    quantization_config=bnb_config,
)
```

```python
text_generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    temperature=0.3,
    repetition_penalty=1.1,
    top_p=0.9,
    max_length=610,
    do_sample=True,
    return_full_text=False,
    min_new_tokens=32
)
```

```python
text = """Yapay zeka hakkında 3 tespit yaz.\n"""

r = text_generator(text)

print(r[0]['generated_text'])

"""
1. Yapay Zeka (AI), makinelerin insan benzeri bilişsel işlevleri gerçekleştirmesini sağlayan bir teknoloji alanıdır.

2. Yapay zekanın geliştirilmesi ve uygulanması, sağlık hizmetlerinden eğlenceye kadar çeşitli sektörlerde çok sayıda fırsat sunmaktadır.

3. Yapay zeka teknolojisinin potansiyel faydaları önemli olsa da mahremiyet, işten çıkarma ve etik hususlar gibi konularla ilgili endişeler de var.
"""
```

# Acknowledgments
- Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗
- Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHeM) under grant numbers 1016912023 and 
1018512024
- Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)

### Contact
COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department <br>
https://cosmos.yildiz.edu.tr/ <br>
[email protected]


---
license: llama3
---