# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import sys from datetime import datetime import numpy as np import random def inverse_sigmoid(x): return torch.log(x/(1-x)) def PILtoTorch(pil_image, resolution): resized_image_PIL = pil_image.resize(resolution) resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 if len(resized_image.shape) == 3: return resized_image.permute(2, 0, 1) else: return resized_image.unsqueeze(dim=-1).permute(2, 0, 1) def get_expon_lr_func( lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 ): """ Copied from Plenoxels Continuous learning rate decay function. Adapted from JaxNeRF The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. :param conf: config subtree 'lr' or similar :param max_steps: int, the number of steps during optimization. :return HoF which takes step as input """ def helper(step): if step < 0 or (lr_init == 0.0 and lr_final == 0.0): # Disable this parameter return 0.0 if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 t = np.clip(step / max_steps, 0, 1) log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) return delay_rate * log_lerp return helper def strip_lowerdiag(L): uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") uncertainty[:, 0] = L[:, 0, 0] uncertainty[:, 1] = L[:, 0, 1] uncertainty[:, 2] = L[:, 0, 2] uncertainty[:, 3] = L[:, 1, 1] uncertainty[:, 4] = L[:, 1, 2] uncertainty[:, 5] = L[:, 2, 2] return uncertainty def strip_symmetric(sym): return strip_lowerdiag(sym) def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: """ From Pytorch3d Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part first, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: """ From Pytorch3d Multiply two quaternions. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions shape (..., 4). """ aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) # Matrix to quaternion does not come under NVIDIA Copyright # Written by Stan Szymanowicz 2023 def matrix_to_quaternion(M: torch.Tensor) -> torch.Tensor: """ Matrix-to-quaternion conversion method. Equation taken from https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm Args: M: rotation matrices, (3 x 3) Returns: q: quaternion of shape (4) """ tr = 1 + M[ 0, 0] + M[ 1, 1] + M[ 2, 2] if tr > 0: r = torch.sqrt(tr) / 2.0 x = ( M[ 2, 1] - M[ 1, 2] ) / ( 4 * r ) y = ( M[ 0, 2] - M[ 2, 0] ) / ( 4 * r ) z = ( M[ 1, 0] - M[ 0, 1] ) / ( 4 * r ) elif ( M[ 0, 0] > M[ 1, 1]) and (M[ 0, 0] > M[ 2, 2]): S = torch.sqrt(1.0 + M[ 0, 0] - M[ 1, 1] - M[ 2, 2]) * 2 # S=4*qx r = (M[ 2, 1] - M[ 1, 2]) / S x = 0.25 * S y = (M[ 0, 1] + M[ 1, 0]) / S z = (M[ 0, 2] + M[ 2, 0]) / S elif M[ 1, 1] > M[ 2, 2]: S = torch.sqrt(1.0 + M[ 1, 1] - M[ 0, 0] - M[ 2, 2]) * 2 # S=4*qy r = (M[ 0, 2] - M[ 2, 0]) / S x = (M[ 0, 1] + M[ 1, 0]) / S y = 0.25 * S z = (M[ 1, 2] + M[ 2, 1]) / S else: S = torch.sqrt(1.0 + M[ 2, 2] - M[ 0, 0] - M[ 1, 1]) * 2 # S=4*qz r = (M[ 1, 0] - M[ 0, 1]) / S x = (M[ 0, 2] + M[ 2, 0]) / S y = (M[ 1, 2] + M[ 2, 1]) / S z = 0.25 * S return torch.stack([r, x, y, z], dim=-1) def build_rotation(r): norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device='cuda') r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R def build_scaling_rotation(s, r): L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") R = build_rotation(r) L[:,0,0] = s[:,0] L[:,1,1] = s[:,1] L[:,2,2] = s[:,2] L = R @ L return L def safe_state(cfg, silent=False): old_f = sys.stdout class F: def __init__(self, silent): self.silent = silent def write(self, x): if not self.silent: if x.endswith("\n"): old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S"))))) else: old_f.write(x) def flush(self): old_f.flush() sys.stdout = F(silent) random.seed(cfg.general.random_seed) np.random.seed(cfg.general.random_seed) torch.manual_seed(cfg.general.random_seed) device = torch.device("cuda:{}".format(cfg.general.device)) torch.cuda.set_device(device) return device