""" Train a diffusion model on images. """ import json import sys import os sys.path.append('.') # from dnnlib import EasyDict import traceback import torch as th import torch.multiprocessing as mp import torch.distributed as dist import numpy as np import argparse import dnnlib from guided_diffusion import dist_util, logger from guided_diffusion.resample import create_named_schedule_sampler from guided_diffusion.script_util import ( args_to_dict, add_dict_to_argparser, continuous_diffusion_defaults, control_net_defaults, model_and_diffusion_defaults, create_model_and_diffusion, ) from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion import nsr import nsr.lsgm # from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop from datasets.eg3d_dataset import LMDBDataset_MV_Compressed_eg3d from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default from datasets.shapenet import load_data, load_eval_data, load_memory_data from nsr.losses.builder import E3DGELossClass from utils.torch_utils import legacy, misc from torch.utils.data import Subset from pdb import set_trace as st from dnnlib.util import EasyDict, InfiniteSampler # from .vit_triplane_train_FFHQ import init_dataset_kwargs from datasets.eg3d_dataset import init_dataset_kwargs # from torch.utils.tensorboard import SummaryWriter SEED = 0 def training_loop(args): # def training_loop(args): logger.log("dist setup...") # th.autograd.set_detect_anomaly(False) # type: ignore th.autograd.set_detect_anomaly(True) # type: ignore th.cuda.set_device( args.local_rank) # set this line to avoid extra memory on rank 0 th.cuda.empty_cache() th.cuda.manual_seed_all(SEED) np.random.seed(SEED) dist_util.setup_dist(args) # st() # mark # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) logger.configure(dir=args.logdir) logger.log("creating ViT encoder and NSR decoder...") # st() # mark device = dist_util.dev() args.img_size = [args.image_size_encoder] logger.log("creating model and diffusion...") # * set denoise model args if args.denoise_in_channels == -1: args.diffusion_input_size = args.image_size_encoder args.denoise_in_channels = args.out_chans args.denoise_out_channels = args.out_chans else: assert args.denoise_out_channels != -1 # args.image_size = args.image_size_encoder # 224, follow the triplane size # if args.diffusion_input_size == -1: # else: # args.image_size = args.diffusion_input_size if args.pred_type == 'v': # for lsgm training assert args.predict_v == True # for DDIM sampling denoise_model, diffusion = create_model_and_diffusion( **args_to_dict(args, model_and_diffusion_defaults().keys())) opts = eg3d_options_default() if args.sr_training: args.sr_kwargs = dnnlib.EasyDict( channel_base=opts.cbase, channel_max=opts.cmax, fused_modconv_default='inference_only', use_noise=True ) # ! close noise injection? since noise_mode='none' in eg3d logger.log("creating encoder and NSR decoder...") auto_encoder = create_3DAE_model( **args_to_dict(args, encoder_and_nsr_defaults().keys())) auto_encoder.to(device) auto_encoder.eval() # * load G_ema modules into autoencoder # * clone G_ema.decoder to auto_encoder triplane # logger.log("AE triplane decoder reuses G_ema decoder...") # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) # auto_encoder.decoder.triplane_decoder.decoder.load_state_dict( # type: ignore # G_ema.decoder.state_dict()) # type: ignore # set grad=False in this manner suppresses the DDP forward no grad error. # if args.sr_training: # logger.log("AE triplane decoder reuses G_ema SR module...") # # auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore # # G_ema.superresolution.state_dict()) # type: ignore # # set grad=False in this manner suppresses the DDP forward no grad error. # logger.log("freeze SR module...") # for param in auto_encoder.decoder.superresolution.parameters(): # type: ignore # param.requires_grad_(False) # # del G_ema # th.cuda.empty_cache() if args.freeze_triplane_decoder: logger.log("freeze triplane decoder...") for param in auto_encoder.decoder.triplane_decoder.parameters( ): # type: ignore # for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore param.requires_grad_(False) if args.cfg in ('afhq', 'ffhq'): if args.sr_training: logger.log("AE triplane decoder reuses G_ema SR module...") auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore G_ema.superresolution.state_dict()) # type: ignore # set grad=False in this manner suppresses the DDP forward no grad error. for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters( ): # type: ignore param.requires_grad_(False) # ! load data if args.use_lmdb: logger.log("creating LMDB eg3d data loader...") training_set = LMDBDataset_MV_Compressed_eg3d( args.data_dir, args.image_size, args.image_size_encoder, ) else: logger.log("creating eg3d data loader...") training_set_kwargs, dataset_name = init_dataset_kwargs(data=args.data_dir, class_name='datasets.eg3d_dataset.ImageFolderDataset', reso_gt=args.image_size) # only load pose here # if args.cond and not training_set_kwargs.use_labels: # raise Exception('check here') # training_set_kwargs.use_labels = args.cond training_set_kwargs.use_labels = True training_set_kwargs.xflip = False training_set_kwargs.random_seed = SEED training_set_kwargs.max_size = args.dataset_size # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' # * construct ffhq/afhq dataset training_set = dnnlib.util.construct_class_by_name( **training_set_kwargs) # subclass of training.dataset.Dataset training_set_sampler = InfiniteSampler( dataset=training_set, rank=dist_util.get_rank(), num_replicas=dist_util.get_world_size(), seed=SEED) data = iter( th.utils.data.DataLoader( dataset=training_set, sampler=training_set_sampler, batch_size=args.batch_size, pin_memory=True, num_workers=args.num_workers, persistent_workers=args.num_workers>0, # prefetch_factor=max(8//args.batch_size, 2), )) # prefetch_factor=2)) eval_data = th.utils.data.DataLoader(dataset=Subset( training_set, np.arange(8)), batch_size=args.eval_batch_size, num_workers=1) else: logger.log("creating data loader...") if args.objv_dataset: from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data else: # shapenet from datasets.shapenet import load_data, load_eval_data, load_memory_data # TODO, load shapenet data # data = load_data( # st() mark if args.overfitting: logger.log("create overfitting memory dataset") data = load_memory_data( file_path=args.eval_data_dir, batch_size=args.batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=True # for evaluation ) else: logger.log("create all instances dataset") # st() mark data = load_data( file_path=args.data_dir, batch_size=args.batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=args.load_depth, preprocess=auto_encoder.preprocess, # clip dataset_size=args.dataset_size, use_lmdb=args.use_lmdb, trainer_name=args.trainer_name, # load_depth=True # for evaluation ) eval_data = load_eval_data( file_path=args.eval_data_dir, batch_size=args.eval_batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=True, # for evaluation interval=args.interval, # use_lmdb=args.use_lmdb, ) # let all processes sync up before starting with a new epoch of training if dist_util.get_rank() == 0: with open(os.path.join(args.logdir, 'args.json'), 'w') as f: json.dump(vars(args), f, indent=2) args.schedule_sampler = create_named_schedule_sampler( args.schedule_sampler, diffusion) opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) loss_class = E3DGELossClass(device, opt).to(device) logger.log("training...") TrainLoop = { 'adm': nsr.TrainLoop3DDiffusion, 'dit': nsr.TrainLoop3DDiffusionDiT, 'ssd': nsr.TrainLoop3DDiffusionSingleStage, # 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD, 'ssd_cvD_sds': nsr.TrainLoop3DDiffusionSingleStagecvDSDS, 'ssd_cvd_sds_no_separate_sds_step': nsr.TrainLoop3DDiffusionSingleStagecvDSDS_sdswithrec, 'vpsde_lsgm_noD': nsr.lsgm.TrainLoop3DDiffusionLSGM_noD, # use vpsde 'vpsde_TrainLoop3DDiffusionLSGM_cvD': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_weightingv0': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_weightingv0, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED, 'vpsde_TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED_nv': nsr.lsgm.TrainLoop3DDiffusionLSGM_cvD_scaling_lsgm_unfreezeD_iterativeED_nv, 'vpsde_lsgm_joint_noD': nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD, # use vpsde 'vpsde_lsgm_joint_noD_ponly': nsr.lsgm.TrainLoop3DDiffusionLSGMJointnoD_ponly, # use vpsde # control 'vpsde_cldm':nsr.lsgm.TrainLoop3DDiffusionLSGM_Control, 'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn, 'vpsde_ldm': nsr.lsgm.TrainLoop3D_LDM, }[args.trainer_name] if 'vpsde' in args.trainer_name: sde_diffusion = make_sde_diffusion( dnnlib.EasyDict( args_to_dict(args, continuous_diffusion_defaults().keys()))) assert args.mixed_prediction, 'enable mixed_prediction by default' logger.log('create VPSDE diffusion.') else: sde_diffusion = None if 'cldm' in args.trainer_name: assert isinstance(denoise_model, tuple) denoise_model, controlNet = denoise_model controlNet.to(dist_util.dev()) controlNet.train() else: controlNet = None # st() denoise_model.to(dist_util.dev()) denoise_model.train() TrainLoop(rec_model=auto_encoder, denoise_model=denoise_model, control_model=controlNet, diffusion=diffusion, sde_diffusion=sde_diffusion, loss_class=loss_class, data=data, eval_data=eval_data, **vars(args)).run_loop() dist_util.synchronize() def create_argparser(**kwargs): # defaults.update(model_and_diffusion_defaults()) defaults = dict( dataset_size=-1, diffusion_input_size=-1, trainer_name='adm', use_amp=False, triplane_scaling_divider=1.0, # divide by this value overfitting=False, num_workers=4, image_size=128, image_size_encoder=224, iterations=150000, schedule_sampler="uniform", anneal_lr=False, lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, eval_batch_size=12, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=50, eval_interval=2500, save_interval=10000, resume_checkpoint="", resume_checkpoint_EG3D="", use_fp16=False, fp16_scale_growth=1e-3, data_dir="", eval_data_dir="", load_depth=True, # TODO logdir="/mnt/lustre/yslan/logs/nips23/", load_submodule_name='', # for loading pretrained auto_encoder model ignore_resume_opt=False, # freeze_ae=False, denoised_ae=True, diffusion_ce_anneal=False, use_lmdb=False, interval=1, freeze_triplane_decoder=False, objv_dataset=False, cond_key='img_sr', ) defaults.update(model_and_diffusion_defaults()) defaults.update(continuous_diffusion_defaults()) defaults.update(encoder_and_nsr_defaults()) # type: ignore defaults.update(loss_defaults()) defaults.update(control_net_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" # os.environ["NCCL_DEBUG"] = "INFO" os.environ[ "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. args = create_argparser().parse_args() args.local_rank = int(os.environ["LOCAL_RANK"]) args.gpus = th.cuda.device_count() # opts = dnnlib.EasyDict(vars(args)) # compatiable with triplane original settings # opts = args args.rendering_kwargs = rendering_options_defaults(args) # Launch processes. logger.log('Launching processes...') logger.log('Available devices ', th.cuda.device_count()) logger.log('Current cuda device ', th.cuda.current_device()) # logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device())) try: training_loop(args) # except KeyboardInterrupt as e: except Exception as e: # print(e) traceback.print_exc() dist_util.cleanup() # clean port and socket when ctrl+c