""" Train a diffusion model on images. """ import json import sys import os sys.path.append('.') import torch.distributed as dist import traceback import torch as th import torch.multiprocessing as mp import numpy as np import argparse import dnnlib from guided_diffusion import dist_util, logger from guided_diffusion.script_util import ( args_to_dict, add_dict_to_argparser, ) # from nsr.train_util import TrainLoop3DRec as TrainLoop import nsr from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default from datasets.shapenet import load_data, load_eval_data, load_memory_data from nsr.losses.builder import E3DGELossClass from pdb import set_trace as st import warnings warnings.filterwarnings("ignore", category=UserWarning) # th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16 SEED = 0 def training_loop(args): # def training_loop(args): dist_util.setup_dist(args) # dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count()) print(f"{args.local_rank=} init complete") th.cuda.set_device(args.local_rank) th.cuda.empty_cache() th.cuda.manual_seed_all(SEED) np.random.seed(SEED) # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) logger.configure(dir=args.logdir) logger.log("creating encoder and NSR decoder...") # device = dist_util.dev() device = th.device("cuda", args.local_rank) # shared eg3d opts opts = eg3d_options_default() if args.sr_training: args.sr_kwargs = dnnlib.EasyDict( channel_base=opts.cbase, channel_max=opts.cmax, fused_modconv_default='inference_only', use_noise=True ) # ! close noise injection? since noise_mode='none' in eg3d auto_encoder = create_3DAE_model( **args_to_dict(args, encoder_and_nsr_defaults().keys())) auto_encoder.to(device) auto_encoder.train() logger.log("creating data loader...") # data = load_data( if args.overfitting: data = load_memory_data( file_path=args.data_dir, batch_size=args.batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, # trainer_name=args.trainer_name, # load_depth=args.depth_lambda > 0 load_depth=True # for evaluation ) else: data = load_data( dataset_size=args.dataset_size, file_path=args.data_dir, batch_size=args.batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=args.num_workers, load_depth=True, preprocess=auto_encoder.preprocess, # clip trainer_name=args.trainer_name, use_lmdb=args.use_lmdb # load_depth=True # for evaluation ) eval_data = load_eval_data( file_path=args.eval_data_dir, batch_size=args.eval_batch_size, reso=args.image_size, reso_encoder=args.image_size_encoder, # 224 -> 128 num_workers=2, load_depth=True, # for evaluation preprocess=auto_encoder.preprocess) args.img_size = [args.image_size_encoder] # try dry run # batch = next(data) # batch = None # logger.log("creating model and diffusion...") # let all processes sync up before starting with a new epoch of training dist_util.synchronize() # schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion) opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) loss_class = E3DGELossClass(device, opt).to(device) # writer = SummaryWriter() # TODO, add log dir logger.log("training...") TrainLoop = { 'cvD': nsr.TrainLoop3DcvD, 'nvsD': nsr.TrainLoop3DcvD_nvsD, 'nvsD_nosr': nsr.TrainLoop3DcvD_nvsD_noSR, 'cano_nvsD_nosr': nsr.TrainLoop3DcvD_nvsD_noSR, 'cano_nvs_cvD': nsr.TrainLoop3DcvD_nvsD_canoD, 'cano_nvs_cvD_nv': nsr.TrainLoop3DcvD_nvsD_canoD_multiview, 'cvD_nvsD_canoD_canomask': nsr.TrainLoop3DcvD_nvsD_canoD_canomask, 'canoD': nsr.TrainLoop3DcvD_canoD }[args.trainer_name] TrainLoop(rec_model=auto_encoder, loss_class=loss_class, data=data, eval_data=eval_data, **vars(args)).run_loop() # ! overfitting def create_argparser(**kwargs): # defaults.update(model_and_diffusion_defaults()) defaults = dict( dataset_size=-1, trainer_name='cvD', use_amp=False, overfitting=False, num_workers=4, image_size=128, image_size_encoder=224, iterations=150000, anneal_lr=False, lr=5e-5, weight_decay=0.0, lr_anneal_steps=0, batch_size=1, eval_batch_size=12, microbatch=-1, # -1 disables microbatches ema_rate="0.9999", # comma-separated list of EMA values log_interval=50, eval_interval=2500, save_interval=10000, resume_checkpoint="", use_fp16=False, fp16_scale_growth=1e-3, data_dir="", eval_data_dir="", # load_depth=False, # TODO logdir="/mnt/lustre/yslan/logs/nips23/", pose_warm_up_iter=-1, use_lmdb=False, ) defaults.update(encoder_and_nsr_defaults()) # type: ignore defaults.update(loss_defaults()) parser = argparse.ArgumentParser() add_dict_to_argparser(parser, defaults) return parser if __name__ == "__main__": os.environ[ "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" # master_addr = '127.0.0.1' # master_port = dist_util._find_free_port() # master_port = 31323 args = create_argparser().parse_args() args.local_rank = int(os.environ["LOCAL_RANK"]) args.gpus = th.cuda.device_count() opts = args args.rendering_kwargs = rendering_options_defaults(opts) # print(args) with open(os.path.join(args.logdir, 'args.json'), 'w') as f: json.dump(vars(args), f, indent=2) # Launch processes. print('Launching processes...') try: training_loop(args) # except KeyboardInterrupt as e: except Exception as e: # print(e) traceback.print_exc() dist_util.cleanup() # clean port and socket when ctrl+c