model_paths = { 'ir_se50': 'pretrained_models/model_ir_se50.pth', 'resnet34': 'pretrained_models/resnet34-333f7ec4.pth', 'stylegan_ffhq': 'pretrained_models/stylegan2-ffhq-config-f.pt', 'stylegan_cars': 'pretrained_models/stylegan2-car-config-f.pt', 'stylegan_church': 'pretrained_models/stylegan2-church-config-f.pt', 'stylegan_horse': 'pretrained_models/stylegan2-horse-config-f.pt', 'stylegan_ada_wild': 'pretrained_models/afhqwild.pt', 'stylegan_toonify': 'pretrained_models/ffhq_cartoon_blended.pt', 'shape_predictor': 'pretrained_models/shape_predictor_68_face_landmarks.dat', 'circular_face': 'pretrained_models/CurricularFace_Backbone.pth', 'mtcnn_pnet': 'pretrained_models/mtcnn/pnet.npy', 'mtcnn_rnet': 'pretrained_models/mtcnn/rnet.npy', 'mtcnn_onet': 'pretrained_models/mtcnn/onet.npy', 'moco': 'pretrained_models/moco_v2_800ep_pretrain.pt' } project_basedir = '/mnt/lustre/yslan/Repo/Research/SIGA22/BaseModels/StyleSDF' for k, v in model_paths.items(): model_paths[k] = f'{project_basedir}/project/utils/misc/' + model_paths[k] model_paths['ir_se50_hwc'] = '/home/yslan/datasets/model_ir_se50.pth'