import torch from pdb import set_trace as st from torch import nn from .model_irse import Backbone from .paths_config import model_paths class IDLoss(nn.Module): def __init__(self, device): # super(IDLoss, self).__init__() super().__init__() print('Loading ResNet ArcFace') self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se').to(device) # self.facenet.load_state_dict(torch.load(model_paths['ir_se50'])) try: face_net_model = torch.load(model_paths['ir_se50'], map_location=device) except Exception as e: face_net_model = torch.load(model_paths['ir_se50_hwc'], map_location=device) self.facenet.load_state_dict(face_net_model) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, y, x): n_samples, _, H, W = x.shape assert H == W == 256, 'idloss needs 256*256 input images' x_feats = self.extract_feats(x) y_feats = self.extract_feats(y) # Otherwise use the feature from there y_hat_feats = self.extract_feats(y_hat) y_feats = y_feats.detach() loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_target = y_hat_feats[i].dot(y_feats[i]) diff_input = y_hat_feats[i].dot(x_feats[i]) diff_views = y_feats[i].dot(x_feats[i]) id_logs.append({ 'diff_target': float(diff_target), 'diff_input': float(diff_input), 'diff_views': float(diff_views) }) loss += 1 - diff_target id_diff = float(diff_target) - float(diff_views) sim_improvement += id_diff count += 1 return loss / count, sim_improvement / count, id_logs