from collections import namedtuple from pdb import set_trace as st import torch import numpy as np import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module """ ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) """ # from nsr.networks_stylegan2 import FullyConnectedLayer as EqualLinear # class GradualStyleBlock(Module): # def __init__(self, in_c, out_c, spatial): # super(GradualStyleBlock, self).__init__() # self.out_c = out_c # self.spatial = spatial # num_pools = int(np.log2(spatial)) # modules = [] # modules += [ # Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), # nn.LeakyReLU() # ] # for i in range(num_pools - 1): # modules += [ # Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), # nn.LeakyReLU() # ] # self.convs = nn.Sequential(*modules) # self.linear = EqualLinear(out_c, out_c, lr_multiplier=1) # def forward(self, x): # x = self.convs(x) # x = x.reshape(-1, self.out_c) # x = self.linear(x) # return x # from project.models.model import ModulatedConv2d class DemodulatedConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, padding=0, bias=False, dilation=1): super().__init__() # https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/411. fix droplet issue self.eps = 1e-8 if not isinstance(kernel_size, tuple): self.kernel_size = (kernel_size, kernel_size) else: self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.weight = nn.Parameter( # torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) torch.randn(1, out_channel, in_channel, *kernel_size)) self.bias = None if bias: self.bias = nn.Parameter(torch.randn(out_channel)) self.stride = stride self.padding = padding self.dilation = dilation def forward(self, input): batch, in_channel, height, width = input.shape demod = torch.rsqrt(self.weight.pow(2).sum([2, 3, 4]) + 1e-8) demod = demod.repeat_interleave(batch, 0) weight = self.weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view( # batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size batch * self.out_channel, in_channel, *self.kernel_size) input = input.view(1, batch * in_channel, height, width) if self.bias is None: out = F.conv2d(input, weight, padding=self.padding, groups=batch, dilation=self.dilation, stride=self.stride) else: out = F.conv2d(input, weight, bias=self.bias, padding=self.padding, groups=batch, dilation=self.dilation, stride=self.stride) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class Flatten(Module): def forward(self, input): return input.reshape(input.size(0), -1) def l2_norm(input, axis=1): norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): """ A named tuple describing a ResNet block. """ def get_block(in_channel, depth, num_units, stride=2): return [Bottleneck(in_channel, depth, stride) ] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)] def get_blocks(num_layers): if num_layers == 50: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=4), get_block(in_channel=128, depth=256, num_units=14), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 100: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=13), get_block(in_channel=128, depth=256, num_units=30), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 152: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=8), get_block(in_channel=128, depth=256, num_units=36), get_block(in_channel=256, depth=512, num_units=3) ] else: raise ValueError( "Invalid number of layers: {}. Must be one of [50, 100, 152]". format(num_layers)) return blocks class SEModule(Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = AdaptiveAvgPool2d(1) self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False) self.relu = ReLU(inplace=True) self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False) self.sigmoid = Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x class bottleneck_IR(Module): def __init__(self, in_channel, depth, stride, norm_layer=None, demodulate=False): super(bottleneck_IR, self).__init__() if norm_layer is None: norm_layer = BatchNorm2d if demodulate: conv2d = DemodulatedConv2d else: conv2d = Conv2d if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( # Conv2d(in_channel, depth, (1, 1), stride, bias=False), conv2d(in_channel, depth, (1, 1), stride, bias=False), norm_layer(depth)) # BatchNorm2d(depth) self.res_layer = Sequential( # BatchNorm2d(in_channel), norm_layer(in_channel), # Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), # Conv2d(depth, depth, (3, 3), stride, 1, bias=False), conv2d(depth, depth, (3, 3), stride, 1, bias=False), norm_layer(depth)) # BatchNorm2d(depth)) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class bottleneck_IR_SE(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR_SE, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride, bias=False), BatchNorm2d(depth)) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth), SEModule(depth, 16)) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut def _upsample_add(x, y): """Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. """ _, _, H, W = y.size() return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y # from NeuRay def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, padding_mode='reflect') def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False, padding_mode='reflect') class ResidualBlock(nn.Module): def __init__(self, dim_in, dim_out, dim_inter=None, use_norm=True, norm_layer=nn.BatchNorm2d, bias=False): super().__init__() if dim_inter is None: dim_inter = dim_out if use_norm: self.conv = nn.Sequential( norm_layer(dim_in), nn.ReLU(True), nn.Conv2d(dim_in, dim_inter, 3, 1, 1, bias=bias, padding_mode='reflect'), norm_layer(dim_inter), nn.ReLU(True), nn.Conv2d(dim_inter, dim_out, 3, 1, 1, bias=bias, padding_mode='reflect'), ) else: self.conv = nn.Sequential( nn.ReLU(True), nn.Conv2d(dim_in, dim_inter, 3, 1, 1), nn.ReLU(True), nn.Conv2d(dim_inter, dim_out, 3, 1, 1), ) self.short_cut = None if dim_in != dim_out: self.short_cut = nn.Conv2d(dim_in, dim_out, 1, 1) def forward(self, feats): feats_out = self.conv(feats) if self.short_cut is not None: feats_out = self.short_cut(feats) + feats_out else: feats_out = feats_out + feats return feats_out class conv(nn.Module): def __init__(self, num_in_layers, num_out_layers, kernel_size, stride): super(conv, self).__init__() self.kernel_size = kernel_size self.conv = nn.Conv2d(num_in_layers, num_out_layers, kernel_size=kernel_size, stride=stride, padding=(self.kernel_size - 1) // 2, padding_mode='reflect') self.bn = nn.InstanceNorm2d(num_out_layers, track_running_stats=False, affine=True) def forward(self, x): return F.elu(self.bn(self.conv(x)), inplace=True) class upconv(nn.Module): def __init__(self, num_in_layers, num_out_layers, kernel_size, scale): super(upconv, self).__init__() self.scale = scale self.conv = conv(num_in_layers, num_out_layers, kernel_size, 1) def forward(self, x): x = nn.functional.interpolate(x, scale_factor=self.scale, align_corners=True, mode='bilinear') return self.conv(x)