import math import random from PIL import Image import blobfile as bf from mpi4py import MPI import numpy as np from torch.utils.data import DataLoader, Dataset def load_data( *, data_dir, batch_size, image_size, class_cond=False, deterministic=False, random_crop=False, random_flip=True, ): """ For a dataset, create a generator over (images, kwargs) pairs. Each images is an NCHW float tensor, and the kwargs dict contains zero or more keys, each of which map to a batched Tensor of their own. The kwargs dict can be used for class labels, in which case the key is "y" and the values are integer tensors of class labels. :param data_dir: a dataset directory. :param batch_size: the batch size of each returned pair. :param image_size: the size to which images are resized. :param class_cond: if True, include a "y" key in returned dicts for class label. If classes are not available and this is true, an exception will be raised. :param deterministic: if True, yield results in a deterministic order. :param random_crop: if True, randomly crop the images for augmentation. :param random_flip: if True, randomly flip the images for augmentation. """ if not data_dir: raise ValueError("unspecified data directory") all_files = _list_image_files_recursively(data_dir) classes = None if class_cond: # Assume classes are the first part of the filename, # before an underscore. class_names = [bf.basename(path).split("_")[0] for path in all_files] sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))} classes = [sorted_classes[x] for x in class_names] dataset = ImageDataset( image_size, all_files, classes=classes, shard=MPI.COMM_WORLD.Get_rank(), num_shards=MPI.COMM_WORLD.Get_size(), random_crop=random_crop, random_flip=random_flip, ) if deterministic: loader = DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True ) else: loader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True ) while True: yield from loader def _list_image_files_recursively(data_dir): results = [] for entry in sorted(bf.listdir(data_dir)): full_path = bf.join(data_dir, entry) ext = entry.split(".")[-1] if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]: results.append(full_path) elif bf.isdir(full_path): results.extend(_list_image_files_recursively(full_path)) return results class ImageDataset(Dataset): def __init__( self, resolution, image_paths, classes=None, shard=0, num_shards=1, random_crop=False, random_flip=True, ): super().__init__() self.resolution = resolution self.local_images = image_paths[shard:][::num_shards] self.local_classes = None if classes is None else classes[shard:][::num_shards] self.random_crop = random_crop self.random_flip = random_flip def __len__(self): return len(self.local_images) def __getitem__(self, idx): path = self.local_images[idx] with bf.BlobFile(path, "rb") as f: pil_image = Image.open(f) pil_image.load() pil_image = pil_image.convert("RGB") if self.random_crop: arr = random_crop_arr(pil_image, self.resolution) else: arr = center_crop_arr(pil_image, self.resolution) if self.random_flip and random.random() < 0.5: arr = arr[:, ::-1] arr = arr.astype(np.float32) / 127.5 - 1 out_dict = {} if self.local_classes is not None: out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64) return np.transpose(arr, [2, 0, 1]), out_dict def center_crop_arr(pil_image, image_size): # We are not on a new enough PIL to support the `reducing_gap` # argument, which uses BOX downsampling at powers of two first. # Thus, we do it by hand to improve downsample quality. while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize( tuple(x // 2 for x in pil_image.size), resample=Image.BOX ) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize( tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC ) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size] def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0): min_smaller_dim_size = math.ceil(image_size / max_crop_frac) max_smaller_dim_size = math.ceil(image_size / min_crop_frac) smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1) # We are not on a new enough PIL to support the `reducing_gap` # argument, which uses BOX downsampling at powers of two first. # Thus, we do it by hand to improve downsample quality. while min(*pil_image.size) >= 2 * smaller_dim_size: pil_image = pil_image.resize( tuple(x // 2 for x in pil_image.size), resample=Image.BOX ) scale = smaller_dim_size / min(*pil_image.size) pil_image = pil_image.resize( tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC ) arr = np.array(pil_image) crop_y = random.randrange(arr.shape[0] - image_size + 1) crop_x = random.randrange(arr.shape[1] - image_size + 1) return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]