# --------------------------------------------------------------- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for LSGM. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- import logging import os import math import shutil import time import sys import types import torch import torch.nn as nn import numpy as np import torch.distributed as dist # from util.distributions import PixelNormal from torch.cuda.amp import autocast # from tensorboardX import SummaryWriter class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt class ExpMovingAvgrageMeter(object): def __init__(self, momentum=0.9): self.momentum = momentum self.reset() def reset(self): self.avg = 0 def update(self, val): self.avg = (1. - self.momentum) * self.avg + self.momentum * val class DummyDDP(nn.Module): def __init__(self, model): super(DummyDDP, self).__init__() self.module = model def forward(self, *input, **kwargs): return self.module(*input, **kwargs) def count_parameters_in_M(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 def save_checkpoint(state, is_best, save): filename = os.path.join(save, 'checkpoint.pth.tar') torch.save(state, filename) if is_best: best_filename = os.path.join(save, 'model_best.pth.tar') shutil.copyfile(filename, best_filename) def save(model, model_path): torch.save(model.state_dict(), model_path) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.makedirs(path, exist_ok=True) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: if not os.path.exists(os.path.join(path, 'scripts')): os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file) class Logger(object): def __init__(self, rank, save): # other libraries may set logging before arriving at this line. # by reloading logging, we can get rid of previous configs set by other libraries. from importlib import reload reload(logging) self.rank = rank if self.rank == 0: log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(save, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) self.start_time = time.time() def info(self, string, *args): if self.rank == 0: elapsed_time = time.time() - self.start_time elapsed_time = time.strftime( '(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time)) if isinstance(string, str): string = elapsed_time + string else: logging.info(elapsed_time) logging.info(string, *args) class Writer(object): def __init__(self, rank, save): self.rank = rank if self.rank == 0: self.writer = SummaryWriter(log_dir=save, flush_secs=20) def add_scalar(self, *args, **kwargs): if self.rank == 0: self.writer.add_scalar(*args, **kwargs) def add_figure(self, *args, **kwargs): if self.rank == 0: self.writer.add_figure(*args, **kwargs) def add_image(self, *args, **kwargs): if self.rank == 0: self.writer.add_image(*args, **kwargs) def add_histogram(self, *args, **kwargs): if self.rank == 0: self.writer.add_histogram(*args, **kwargs) def add_histogram_if(self, write, *args, **kwargs): if write and False: # Used for debugging. self.add_histogram(*args, **kwargs) def close(self, *args, **kwargs): if self.rank == 0: self.writer.close() def common_init(rank, seed, save_dir): # we use different seeds per gpu. But we sync the weights after model initialization. torch.manual_seed(rank + seed) np.random.seed(rank + seed) torch.cuda.manual_seed(rank + seed) torch.cuda.manual_seed_all(rank + seed) torch.backends.cudnn.benchmark = True # prepare logging and tensorboard summary logging = Logger(rank, save_dir) writer = Writer(rank, save_dir) return logging, writer def reduce_tensor(tensor, world_size): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= world_size return rt def get_stride_for_cell_type(cell_type): if cell_type.startswith('normal') or cell_type.startswith('combiner'): stride = 1 elif cell_type.startswith('down'): stride = 2 elif cell_type.startswith('up'): stride = -1 else: raise NotImplementedError(cell_type) return stride def get_cout(cin, stride): if stride == 1: cout = cin elif stride == -1: cout = cin // 2 elif stride == 2: cout = 2 * cin return cout def kl_balancer_coeff(num_scales, groups_per_scale, fun): if fun == 'equal': coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'linear': coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'sqrt': coeff = torch.cat( [np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'square': coeff = torch.cat( [np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() else: raise NotImplementedError # convert min to 1. coeff /= torch.min(coeff) return coeff def kl_per_group(kl_all): kl_vals = torch.mean(kl_all, dim=0) kl_coeff_i = torch.abs(kl_all) kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01 return kl_coeff_i, kl_vals def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None): if kl_balance and kl_coeff < 1.0: alpha_i = alpha_i.unsqueeze(0) kl_all = torch.stack(kl_all, dim=1) kl_coeff_i, kl_vals = kl_per_group(kl_all) total_kl = torch.sum(kl_coeff_i) kl_coeff_i = kl_coeff_i / alpha_i * total_kl kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True) kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1) # for reporting kl_coeffs = kl_coeff_i.squeeze(0) else: kl_all = torch.stack(kl_all, dim=1) kl_vals = torch.mean(kl_all, dim=0) # kl = torch.sum(kl_all, dim=1) # kl = torch.mean(kl_all, dim=1) kl = torch.mean(kl_all) kl_coeffs = torch.ones(size=(len(kl_vals),)) return kl_coeff * kl, kl_coeffs, kl_vals def kl_per_group_vada(all_log_q, all_neg_log_p): assert len(all_log_q) == len(all_neg_log_p) kl_all_list = [] kl_diag = [] for log_q, neg_log_p in zip(all_log_q, all_neg_log_p): # kl_diag.append(torch.mean(torch.sum(neg_log_p + log_q, dim=[2, 3]), dim=0)) kl_diag.append(torch.mean(torch.mean(neg_log_p + log_q, dim=[2, 3]), dim=0)) # kl_all_list.append(torch.sum(neg_log_p + log_q, dim=[1, 2, 3])) kl_all_list.append(torch.mean(neg_log_p + log_q, dim=[1, 2, 3])) # kl_all = torch.stack(kl_all, dim=1) # batch x num_total_groups kl_vals = torch.mean(torch.stack(kl_all_list, dim=1), dim=0) # mean per group return kl_all_list, kl_vals, kl_diag def kl_coeff(step, total_step, constant_step, min_kl_coeff, max_kl_coeff): # return max(min(max_kl_coeff * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff) return max(min(min_kl_coeff + (max_kl_coeff - min_kl_coeff) * (step - constant_step) / total_step, max_kl_coeff), min_kl_coeff) def log_iw(decoder, x, log_q, log_p, crop=False): recon = reconstruction_loss(decoder, x, crop) return - recon - log_q + log_p def reconstruction_loss(decoder, x, crop=False): from util.distributions import DiscMixLogistic recon = decoder.log_p(x) if crop: recon = recon[:, :, 2:30, 2:30] if isinstance(decoder, DiscMixLogistic): return - torch.sum(recon, dim=[1, 2]) # summation over RGB is done. else: return - torch.sum(recon, dim=[1, 2, 3]) def vae_terms(all_log_q, all_eps): from util.distributions import log_p_standard_normal # compute kl kl_all = [] kl_diag = [] log_p, log_q = 0., 0. for log_q_conv, eps in zip(all_log_q, all_eps): log_p_conv = log_p_standard_normal(eps) kl_per_var = log_q_conv - log_p_conv kl_diag.append(torch.mean(torch.sum(kl_per_var, dim=[2, 3]), dim=0)) kl_all.append(torch.sum(kl_per_var, dim=[1, 2, 3])) log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) log_p += torch.sum(log_p_conv, dim=[1, 2, 3]) return log_q, log_p, kl_all, kl_diag def sum_log_q(all_log_q): log_q = 0. for log_q_conv in all_log_q: log_q += torch.sum(log_q_conv, dim=[1, 2, 3]) return log_q def cross_entropy_normal(all_eps): from util.distributions import log_p_standard_normal cross_entropy = 0. neg_log_p_per_group = [] for eps in all_eps: neg_log_p_conv = - log_p_standard_normal(eps) neg_log_p = torch.sum(neg_log_p_conv, dim=[1, 2, 3]) cross_entropy += neg_log_p neg_log_p_per_group.append(neg_log_p_conv) return cross_entropy, neg_log_p_per_group def tile_image(batch_image, n, m=None): if m is None: m = n assert n * m == batch_image.size(0) channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3) batch_image = batch_image.view(n, m, channels, height, width) batch_image = batch_image.permute(2, 0, 3, 1, 4) # n, height, n, width, c batch_image = batch_image.contiguous().view(channels, n * height, m * width) return batch_image def average_gradients_naive(params, is_distributed): """ Gradient averaging. """ if is_distributed: size = float(dist.get_world_size()) for param in params: if param.requires_grad: param.grad.data /= size dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) def average_gradients(params, is_distributed): """ Gradient averaging. """ if is_distributed: if isinstance(params, types.GeneratorType): params = [p for p in params] size = float(dist.get_world_size()) grad_data = [] grad_size = [] grad_shapes = [] # Gather all grad values for param in params: if param.requires_grad: grad_size.append(param.grad.data.numel()) grad_shapes.append(list(param.grad.data.shape)) grad_data.append(param.grad.data.flatten()) grad_data = torch.cat(grad_data).contiguous() # All-reduce grad values grad_data /= size dist.all_reduce(grad_data, op=dist.ReduceOp.SUM) # Put back the reduce grad values to parameters base = 0 for i, param in enumerate(params): if param.requires_grad: param.grad.data = grad_data[base:base + grad_size[i]].view(grad_shapes[i]) base += grad_size[i] def average_params(params, is_distributed): """ parameter averaging. """ if is_distributed: size = float(dist.get_world_size()) for param in params: param.data /= size dist.all_reduce(param.data, op=dist.ReduceOp.SUM) def average_tensor(t, is_distributed): if is_distributed: size = float(dist.get_world_size()) dist.all_reduce(t.data, op=dist.ReduceOp.SUM) t.data /= size def broadcast_params(params, is_distributed): if is_distributed: for param in params: dist.broadcast(param.data, src=0) def num_output(dataset): if dataset in {'mnist', 'omniglot'}: return 28 * 28 elif dataset == 'cifar10': return 3 * 32 * 32 elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): size = int(dataset.split('_')[-1]) return 3 * size * size elif dataset == 'ffhq': return 3 * 256 * 256 else: raise NotImplementedError def get_input_size(dataset): if dataset in {'mnist', 'omniglot'}: return 32 elif dataset == 'cifar10': return 32 elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): size = int(dataset.split('_')[-1]) return size elif dataset == 'ffhq': return 256 else: raise NotImplementedError def get_bpd_coeff(dataset): n = num_output(dataset) return 1. / np.log(2.) / n def get_channel_multiplier(dataset, num_scales): if dataset in {'cifar10', 'omniglot'}: mult = (1, 1, 1) elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: if num_scales == 3: mult = (1, 1, 1) # used for prior at 16 elif num_scales == 4: mult = (1, 2, 2, 2) # used for prior at 32 elif num_scales == 5: mult = (1, 1, 2, 2, 2) # used for prior at 64 elif dataset == 'mnist': mult = (1, 1) else: raise NotImplementedError return mult def get_attention_scales(dataset): if dataset in {'cifar10', 'omniglot'}: attn = (True, False, False) elif dataset in {'celeba_256', 'ffhq', 'lsun_church_256'}: # attn = (False, True, False, False) # used for 32 attn = (False, False, True, False, False) # used for 64 elif dataset == 'mnist': attn = (True, False) else: raise NotImplementedError return attn def change_bit_length(x, num_bits): if num_bits != 8: x = torch.floor(x * 255 / 2 ** (8 - num_bits)) x /= (2 ** num_bits - 1) return x def view4D(t, size, inplace=True): """ Equal to view(-1, 1, 1, 1).expand(size) Designed because of this bug: https://github.com/pytorch/pytorch/pull/48696 """ if inplace: return t.unsqueeze_(-1).unsqueeze_(-1).unsqueeze_(-1).expand(size) else: return t.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).expand(size) def get_arch_cells(arch_type, use_se): if arch_type == 'res_mbconv': arch_cells = dict() arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se} arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['ar_nn'] = [''] elif arch_type == 'res_bnswish': arch_cells = dict() arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['up_dec'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['up_post'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['ar_nn'] = [''] elif arch_type == 'res_bnswish2': arch_cells = dict() arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['down_enc'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['normal_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['up_dec'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['down_pre'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['normal_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['up_post'] = {'conv_branch': ['res_bnswish_x2'], 'se': use_se} arch_cells['ar_nn'] = [''] elif arch_type == 'res_mbconv_attn': arch_cells = dict() arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish', ], 'se': use_se, 'attn_type': 'attn'} arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se, 'attn_type': 'attn'} arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['ar_nn'] = [''] elif arch_type == 'res_mbconv_attn_half': arch_cells = dict() arch_cells['normal_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_enc'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} arch_cells['up_dec'] = {'conv_branch': ['mconv_e6k5g0'], 'se': use_se, 'attn_type': 'attn'} arch_cells['normal_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['down_pre'] = {'conv_branch': ['res_bnswish', 'res_bnswish'], 'se': use_se} arch_cells['normal_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['up_post'] = {'conv_branch': ['mconv_e3k5g0'], 'se': use_se} arch_cells['ar_nn'] = [''] else: raise NotImplementedError return arch_cells def groups_per_scale(num_scales, num_groups_per_scale): g = [] n = num_groups_per_scale for s in range(num_scales): assert n >= 1 g.append(n) return g class PositionalEmbedding(nn.Module): def __init__(self, embedding_dim, scale): super(PositionalEmbedding, self).__init__() self.embedding_dim = embedding_dim self.scale = scale def forward(self, timesteps): assert len(timesteps.shape) == 1 timesteps = timesteps * self.scale half_dim = self.embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) return emb class RandomFourierEmbedding(nn.Module): def __init__(self, embedding_dim, scale): super(RandomFourierEmbedding, self).__init__() self.w = nn.Parameter(torch.randn(size=(1, embedding_dim // 2)) * scale, requires_grad=False) def forward(self, timesteps): emb = torch.mm(timesteps[:, None], self.w * 2 * 3.14159265359) return torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) def init_temb_fun(embedding_type, embedding_scale, embedding_dim): if embedding_type == 'positional': temb_fun = PositionalEmbedding(embedding_dim, embedding_scale) elif embedding_type == 'fourier': temb_fun = RandomFourierEmbedding(embedding_dim, embedding_scale) else: raise NotImplementedError return temb_fun def get_dae_model(args, num_input_channels): if args.dae_arch == 'ncsnpp': # we need to import NCSNpp after processes are launched on the multi gpu training. from score_sde.ncsnpp import NCSNpp dae = NCSNpp(args, num_input_channels) else: raise NotImplementedError return dae def symmetrize_image_data(images): return 2.0 * images - 1.0 def unsymmetrize_image_data(images): return (images + 1.) / 2. def normalize_symmetric(images): """ Normalize images by dividing the largest intensity. Used for visualizing the intermediate steps. """ b = images.shape[0] m, _ = torch.max(torch.abs(images).view(b, -1), dim=1) images /= (m.view(b, 1, 1, 1) + 1e-3) return images @torch.jit.script def soft_clamp5(x: torch.Tensor): return x.div(5.).tanh_().mul(5.) # 5. * torch.tanh(x / 5.) <--> soft differentiable clamp between [-5, 5] @torch.jit.script def soft_clamp(x: torch.Tensor, a: torch.Tensor): return x.div(a).tanh_().mul(a) class SoftClamp5(nn.Module): def __init__(self): super(SoftClamp5, self).__init__() def forward(self, x): return soft_clamp5(x) def override_architecture_fields(args, stored_args, logging): # list of architecture parameters used in NVAE: architecture_fields = ['arch_instance', 'num_nf', 'num_latent_scales', 'num_groups_per_scale', 'num_latent_per_group', 'num_channels_enc', 'num_preprocess_blocks', 'num_preprocess_cells', 'num_cell_per_cond_enc', 'num_channels_dec', 'num_postprocess_blocks', 'num_postprocess_cells', 'num_cell_per_cond_dec', 'decoder_dist', 'num_x_bits', 'log_sig_q_scale', 'progressive_input_vae', 'channel_mult'] # backward compatibility """ We have broken backward compatibility. No need to se these manually if not hasattr(stored_args, 'log_sig_q_scale'): logging.info('*** Setting %s manually ****', 'log_sig_q_scale') setattr(stored_args, 'log_sig_q_scale', 5.) if not hasattr(stored_args, 'latent_grad_cutoff'): logging.info('*** Setting %s manually ****', 'latent_grad_cutoff') setattr(stored_args, 'latent_grad_cutoff', 0.) if not hasattr(stored_args, 'progressive_input_vae'): logging.info('*** Setting %s manually ****', 'progressive_input_vae') setattr(stored_args, 'progressive_input_vae', 'none') if not hasattr(stored_args, 'progressive_output_vae'): logging.info('*** Setting %s manually ****', 'progressive_output_vae') setattr(stored_args, 'progressive_output_vae', 'none') """ if not hasattr(stored_args, 'num_x_bits'): logging.info('*** Setting %s manually ****', 'num_x_bits') setattr(stored_args, 'num_x_bits', 8) if not hasattr(stored_args, 'channel_mult'): logging.info('*** Setting %s manually ****', 'channel_mult') setattr(stored_args, 'channel_mult', [1, 2]) for f in architecture_fields: if not hasattr(args, f) or getattr(args, f) != getattr(stored_args, f): logging.info('Setting %s from loaded checkpoint', f) setattr(args, f, getattr(stored_args, f)) def init_processes(rank, size, fn, args): """ Initialize the distributed environment. """ os.environ['MASTER_ADDR'] = args.master_address os.environ['MASTER_PORT'] = '6020' torch.cuda.set_device(args.local_rank) dist.init_process_group(backend='nccl', init_method='env://', rank=rank, world_size=size) fn(args) dist.barrier() dist.destroy_process_group() def sample_rademacher_like(y): return torch.randint(low=0, high=2, size=y.shape, device='cuda') * 2 - 1 def sample_gaussian_like(y): return torch.randn_like(y, device='cuda') def trace_df_dx_hutchinson(f, x, noise, no_autograd): """ Hutchinson's trace estimator for Jacobian df/dx, O(1) call to autograd """ if no_autograd: # the following is compatible with checkpointing torch.sum(f * noise).backward() # torch.autograd.backward(tensors=[f], grad_tensors=[noise]) jvp = x.grad trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) x.grad = None else: jvp = torch.autograd.grad(f, x, noise, create_graph=False)[0] trJ = torch.sum(jvp * noise, dim=[1, 2, 3]) # trJ = torch.einsum('bijk,bijk->b', jvp, noise) # we could test if there's a speed difference in einsum vs sum return trJ def different_p_q_objectives(iw_sample_p, iw_sample_q): assert iw_sample_p in ['ll_uniform', 'drop_all_uniform', 'll_iw', 'drop_all_iw', 'drop_sigma2t_iw', 'rescale_iw', 'drop_sigma2t_uniform'] assert iw_sample_q in ['reweight_p_samples', 'll_uniform', 'll_iw'] # In these cases, we reuse the likelihood-based p-objective (either the uniform sampling version or the importance # sampling version) also for q. if iw_sample_p in ['ll_uniform', 'll_iw'] and iw_sample_q == 'reweight_p_samples': return False # In these cases, we are using a non-likelihood-based objective for p, and hence definitly need to use another q # objective. else: return True # def decoder_output(dataset, logits, fixed_log_scales=None): # if dataset in {'cifar10', 'celeba_64', 'celeba_256', 'imagenet_32', 'imagenet_64', 'ffhq', # 'lsun_bedroom_128', 'lsun_bedroom_256', 'mnist', 'omniglot', # 'lsun_church_256'}: # return PixelNormal(logits, fixed_log_scales) # else: # raise NotImplementedError def get_mixed_prediction(mixed_prediction, param, mixing_logit, mixing_component=None): if mixed_prediction: assert mixing_component is not None, 'Provide mixing component when mixed_prediction is enabled.' coeff = torch.sigmoid(mixing_logit) param = (1 - coeff) * mixing_component + coeff * param return param def set_vesde_sigma_max(args, vae, train_queue, logging, is_distributed): logging.info('') logging.info('Calculating max. pairwise distance in latent space to set sigma2_max for VESDE...') eps_list = [] vae.eval() for step, x in enumerate(train_queue): x = x[0] if len(x) > 1 else x x = x.cuda() x = symmetrize_image_data(x) # run vae with autocast(enabled=args.autocast_train): with torch.set_grad_enabled(False): logits, all_log_q, all_eps = vae(x) eps = torch.cat(all_eps, dim=1) eps_list.append(eps.detach()) # concat eps tensor on each GPU and then gather all on all GPUs eps_this_rank = torch.cat(eps_list, dim=0) if is_distributed: eps_all_gathered = [torch.zeros_like(eps_this_rank)] * dist.get_world_size() dist.all_gather(eps_all_gathered, eps_this_rank) eps_full = torch.cat(eps_all_gathered, dim=0) else: eps_full = eps_this_rank # max pairwise distance squared between all latent encodings, is computed on CPU eps_full = eps_full.cpu().float() eps_full = eps_full.flatten(start_dim=1).unsqueeze(0) max_pairwise_dist_sqr = torch.cdist(eps_full, eps_full).square().max() max_pairwise_dist_sqr = max_pairwise_dist_sqr.cuda() # to be safe, we broadcast to all GPUs if we are in distributed environment. Shouldn't be necessary in principle. if is_distributed: dist.broadcast(max_pairwise_dist_sqr, src=0) args.sigma2_max = max_pairwise_dist_sqr.item() logging.info('Done! Set args.sigma2_max set to {}'.format(args.sigma2_max)) logging.info('') return args def mask_inactive_variables(x, is_active): x = x * is_active return x def common_x_operations(x, num_x_bits): x = x[0] if len(x) > 1 else x x = x.cuda() # change bit length x = change_bit_length(x, num_x_bits) x = symmetrize_image_data(x) return x