# --------------------------------------------------------------- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the NVIDIA Source Code License # for LSGM. To view a copy of this license, see the LICENSE file. # --------------------------------------------------------------- from pdb import set_trace as st from abc import ABC, abstractmethod import numpy as np import torch import gc from .continuous_distributions import log_p_standard_normal, log_p_var_normal from .continuous_diffusion_utils import trace_df_dx_hutchinson, sample_gaussian_like, sample_rademacher_like, get_mixed_prediction from torchdiffeq import odeint from torch.cuda.amp import autocast from timeit import default_timer as timer from guided_diffusion import dist_util, logger def make_diffusion(args): """ simple diffusion factory function to return diffusion instances. Only use this to create continuous diffusions """ if args.sde_sde_type == 'geometric_sde': return DiffusionGeometric(args) elif args.sde_sde_type == 'vpsde': return DiffusionVPSDE(args) elif args.sde_sde_type == 'sub_vpsde': return DiffusionSubVPSDE(args) elif args.sde_sde_type == 'vesde': return DiffusionVESDE(args) else: raise ValueError("Unrecognized sde type: {}".format(args.sde_sde_type)) class DiffusionBase(ABC): """ Abstract base class for all diffusion implementations. """ def __init__(self, args): super().__init__() self.args = args self.sigma2_0 = args.sde_sigma2_0 self.sde_type = args.sde_sde_type @abstractmethod def f(self, t): """ returns the drift coefficient at time t: f(t) """ pass @abstractmethod def g2(self, t): """ returns the squared diffusion coefficient at time t: g^2(t) """ pass @abstractmethod def var(self, t): """ returns variance at time t, \sigma_t^2""" pass @abstractmethod def e2int_f(self, t): """ returns e^{\int_0^t f(s) ds} which corresponds to the coefficient of mean at time t. """ pass @abstractmethod def inv_var(self, var): """ inverse of the variance function at input variance var. """ pass @abstractmethod def mixing_component(self, x_noisy, var_t, t, enabled): """ returns mixing component which is the optimal denoising model assuming that q(z_0) is N(0, 1) """ pass def sample_q(self, x_init, noise, var_t, m_t): """ returns a sample from diffusion process at time t """ return m_t * x_init + torch.sqrt(var_t) * noise def log_snr(self, m_t, var_t): return torch.log((torch.square(m_t) / var_t)) def _predict_x0_from_eps(self, z, eps, logsnr): """eps = (z - alpha * x0) / sigma """ return torch.sqrt(1 + torch.exp(-logsnr)) * ( z - eps * torch.rsqrt(1 + torch.exp(logsnr))) def _predict_eps_from_x0(self, z, x0, logsnr): """x = (z - sigma * eps) / alpha """ return torch.sqrt(1 + torch.exp(logsnr)) * ( z - x0 * torch.rsqrt(1 + torch.exp(-logsnr))) def _predict_eps_from_z_and_v(self, v_t, var_t, z, m_t): # TODO, use logsnr here? return torch.sqrt(var_t) * z + m_t * v_t def _predict_x0_from_z_and_v(self, v_t, var_t, z, m_t): return torch.sqrt(var_t) * v_t + m_t * z def cross_entropy_const(self, ode_eps): """ returns cross entropy factor with variance according to ode integration cutoff ode_eps """ # _, c, h, w = x_init.shape return 0.5 * (1.0 + torch.log(2.0 * np.pi * self.var( t=torch.tensor(ode_eps, device=dist_util.dev())))) def compute_ode_nll(self, dae, eps, ode_eps, ode_solver_tol, enable_autocast, no_autograd, num_samples, report_std): """ calculates NLL based on ODE framework, assuming integration cutoff ode_eps """ # ODE solver starts consuming the CPU memory without this on large models # https://github.com/scipy/scipy/issues/10070 gc.collect() dae.eval() def ode_func(t, state): """ the ode function (including log probability integration for NLL calculation) """ global nfe_counter nfe_counter = nfe_counter + 1 x = state[0].detach() x.requires_grad_(True) noise = sample_gaussian_like( x) # could also use rademacher noise (sample_rademacher_like) with torch.set_grad_enabled(True): with autocast(enabled=enable_autocast): variance = self.var(t=t) mixing_component = self.mixing_component( x_noisy=x, var_t=variance, t=t, enabled=dae.mixed_prediction) pred_params = dae(x=x, t=t) params = get_mixed_prediction(dae.mixed_prediction, pred_params, dae.mixing_logit, mixing_component) dx_dt = self.f(t=t) * x + 0.5 * self.g2( t=t) * params / torch.sqrt(variance) with autocast(enabled=False): dlogp_x_dt = -trace_df_dx_hutchinson( dx_dt, x, noise, no_autograd).view(x.shape[0], 1) return (dx_dt, dlogp_x_dt) # NFE counter global nfe_counter nll_all, nfe_all = [], [] for i in range(num_samples): # integrated log probability logp_diff_t0 = torch.zeros(eps.shape[0], 1, device=dist_util.dev()) nfe_counter = 0 # solve the ODE x_t, logp_diff_t = odeint( ode_func, (eps, logp_diff_t0), torch.tensor([ode_eps, 1.0], device=dist_util.dev()), atol=ode_solver_tol, rtol=ode_solver_tol, method="scipy_solver", options={"solver": 'RK45'}, ) # last output values x_t0, logp_diff_t0 = x_t[-1], logp_diff_t[-1] # prior if self.sde_type == 'vesde': logp_prior = torch.sum(log_p_var_normal(x_t0, var=self.sigma2_max), dim=[1, 2, 3]) else: logp_prior = torch.sum(log_p_standard_normal(x_t0), dim=[1, 2, 3]) log_likelihood = logp_prior - logp_diff_t0.view(-1) nll_all.append(-log_likelihood) nfe_all.append(nfe_counter) nfe_mean = np.mean(nfe_all) nll_all = torch.stack(nll_all, dim=1) nll_mean = torch.mean(nll_all, dim=1) if num_samples > 1 and report_std: nll_stddev = torch.std(nll_all, dim=1) nll_stddev_batch = torch.mean(nll_stddev) nll_stderror_batch = nll_stddev_batch / np.sqrt(num_samples) else: nll_stddev_batch = None nll_stderror_batch = None return nll_mean, nfe_mean, nll_stddev_batch, nll_stderror_batch def sample_model_ode(self, dae, num_samples, shape, ode_eps, ode_solver_tol, enable_autocast, temp, noise=None): """ generates samples using the ODE framework, assuming integration cutoff ode_eps """ # ODE solver starts consuming the CPU memory without this on large models # https://github.com/scipy/scipy/issues/10070 gc.collect() dae.eval() def ode_func(t, x): """ the ode function (sampling only, no NLL stuff) """ global nfe_counter nfe_counter = nfe_counter + 1 with autocast(enabled=enable_autocast): variance = self.var(t=t) mixing_component = self.mixing_component( x_noisy=x, var_t=variance, t=t, enabled=dae.mixed_prediction) pred_params = dae(x=x, t=t) params = get_mixed_prediction(dae.mixed_prediction, pred_params, dae.mixing_logit, mixing_component) dx_dt = self.f(t=t) * x + 0.5 * self.g2( t=t) * params / torch.sqrt(variance) return dx_dt # the initial noise if noise is None: noise = torch.randn(size=[num_samples] + shape, device=dist_util.dev()) if self.sde_type == 'vesde': noise_init = temp * noise * np.sqrt(self.sigma2_max) else: noise_init = temp * noise # NFE counter global nfe_counter nfe_counter = 0 # solve the ODE start = timer() samples_out = odeint( ode_func, noise_init, torch.tensor([1.0, ode_eps], device=dist_util.dev()), atol=ode_solver_tol, rtol=ode_solver_tol, method="scipy_solver", options={"solver": 'RK45'}, ) end = timer() ode_solve_time = end - start return samples_out[-1], nfe_counter, ode_solve_time # def iw_quantities(self, size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde): def iw_quantities(self, iw_sample_mode, size=None): args = self.args time_eps, iw_subvp_like_vp_sde = args.sde_time_eps, args.iw_subvp_like_vp_sde if size is None: size = args.batch_size if self.sde_type in ['geometric_sde', 'vpsde']: return self._iw_quantities_vpsdelike(size, time_eps, iw_sample_mode) elif self.sde_type in ['sub_vpsde']: return self._iw_quantities_subvpsdelike(size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde) elif self.sde_type in ['vesde']: return self._iw_quantities_vesde(size, time_eps, iw_sample_mode) else: raise NotImplementedError def _iw_quantities_vpsdelike(self, size, time_eps, iw_sample_mode): """ For all SDEs where the underlying SDE is of the form dz = -0.5 * beta(t) * z * dt + sqrt{beta(t)} * dw, like for the VPSDE. """ rho = torch.rand(size=[size], device=dist_util.dev()) # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode. # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood # weighting. if iw_sample_mode == 'll_uniform': # uniform t sampling - likelihood obj. for both q and p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'll_iw': # ! q-obj # importance sampling for likelihood obj. - likelihood obj. for both q and p ones = torch.ones_like(rho, device=dist_util.dev()) sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones) log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log( sigma2_eps) var_t = torch.exp(rho * log_sigma2_1 + (1 - rho) * log_sigma2_eps) # sigma square t = self.inv_var(var_t) m_t, g2_t = self.e2int_f(t), self.g2(t) # m_t is alpha_bar obj_weight_t = obj_weight_t_ll = 0.5 * ( log_sigma2_1 - log_sigma2_eps) / (1.0 - var_t) elif iw_sample_mode == 'drop_all_uniform': # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = torch.ones(1, device=dist_util.dev()) obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'drop_all_iw': # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p assert self.sde_type == 'vpsde', 'Importance sampling for fully unweighted objective is currently only ' \ 'implemented for the regular VPSDE.' t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv( rho * self.const_norm_2 + self.const_erf) - self.beta_frac var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = self.const_norm / (1.0 - var_t) obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t) elif iw_sample_mode == 'drop_sigma2t_iw': # ! default mode for p # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p ones = torch.ones_like(rho, device=dist_util.dev()) sigma2_1, sigma2_eps = self.var(ones), self.var(time_eps * ones) var_t = rho * sigma2_1 + (1 - rho) * sigma2_eps # ! sigma square t = self.inv_var(var_t) m_t, g2_t = self.e2int_f(t), self.g2(t) # ! m_t: alpha_bar sqrt obj_weight_t = 0.5 * (sigma2_1 - sigma2_eps) / (1.0 - var_t) obj_weight_t_ll = obj_weight_t / var_t elif iw_sample_mode == 'drop_sigma2t_uniform': # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = g2_t / 2.0 obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'rescale_iw': # importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = 0.5 / (1.0 - var_t) obj_weight_t_ll = g2_t / (2.0 * var_t) else: raise ValueError( "Unrecognized importance sampling type: {}".format( iw_sample_mode)) return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \ obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1) def _iw_quantities_subvpsdelike(self, size, time_eps, iw_sample_mode, iw_subvp_like_vp_sde): """ For all SDEs where the underlying SDE is of the form dz = -0.5 * beta(t) * z * dt + sqrt{beta(t) * (1 - exp[-2 * betaintegral])} * dw, like for the Sub-VPSDE. When iw_subvp_like_vp_sde is True, then we define the importance sampling distributions based on an analogous VPSDE, while stile using the Sub-VPSDE. The motivation is that deriving the correct importance sampling distributions for the Sub-VPSDE itself is hard, but the importance sampling distributions from analogous VPSDEs probably already significantly reduce the variance also for the Sub-VPSDE. """ rho = torch.rand(size=[size], device=dist_util.dev()) # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode. # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood # weighting. if iw_sample_mode == 'll_uniform': # uniform t sampling - likelihood obj. for both q and p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'll_iw': if iw_subvp_like_vp_sde: # importance sampling for vpsde likelihood obj. - sub-vpsde likelihood obj. for both q and p ones = torch.ones_like(rho, device=dist_util.dev()) sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde( time_eps * ones) log_sigma2_1, log_sigma2_eps = torch.log(sigma2_1), torch.log( sigma2_eps) var_t_vpsde = torch.exp(rho * log_sigma2_1 + (1 - rho) * log_sigma2_eps) t = self.inv_var_vpsde(var_t_vpsde) var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) * \ (log_sigma2_1 - log_sigma2_eps) * var_t_vpsde / (1 - var_t_vpsde) / self.beta(t) else: raise NotImplementedError elif iw_sample_mode == 'drop_all_uniform': # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = torch.ones(1, device=dist_util.dev()) obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'drop_all_iw': if iw_subvp_like_vp_sde: # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p assert self.sde_type == 'sub_vpsde', 'Importance sampling for fully unweighted objective is ' \ 'currently only implemented for the Sub-VPSDE.' t = torch.sqrt(1.0 / self.delta_beta_half) * torch.erfinv( rho * self.const_norm_2 + self.const_erf) - self.beta_frac var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = self.const_norm / (1.0 - self.var_vpsde(t)) obj_weight_t_ll = obj_weight_t * g2_t / (2.0 * var_t) else: raise NotImplementedError elif iw_sample_mode == 'drop_sigma2t_iw': if iw_subvp_like_vp_sde: # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p ones = torch.ones_like(rho, device=dist_util.dev()) sigma2_1, sigma2_eps = self.var_vpsde(ones), self.var_vpsde( time_eps * ones) var_t_vpsde = rho * sigma2_1 + (1 - rho) * sigma2_eps t = self.inv_var_vpsde(var_t_vpsde) var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = 0.5 * g2_t / self.beta(t) * ( sigma2_1 - sigma2_eps) / (1.0 - var_t_vpsde) obj_weight_t_ll = obj_weight_t / var_t else: raise NotImplementedError elif iw_sample_mode == 'drop_sigma2t_uniform': # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = g2_t / 2.0 obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'rescale_iw': # importance sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p # Note that we use the sub-vpsde variance to scale the p objective! It's not clear what's optimal here! t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = 0.5 / (1.0 - var_t) obj_weight_t_ll = g2_t / (2.0 * var_t) else: raise ValueError( "Unrecognized importance sampling type: {}".format( iw_sample_mode)) return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \ obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1) def _iw_quantities_vesde(self, size, time_eps, iw_sample_mode): """ For the VESDE. """ rho = torch.rand(size=[size], device=dist_util.dev()) # In the following, obj_weight_t corresponds to the weight in front of the l2 loss for the given iw_sample_mode. # obj_weight_t_ll corresponds to the weight that converts the weighting scheme in iw_sample_mode to likelihood # weighting. if iw_sample_mode == 'll_uniform': # uniform t sampling - likelihood obj. for both q and p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'll_iw': # importance sampling for likelihood obj. - likelihood obj. for both q and p ones = torch.ones_like(rho, device=dist_util.dev()) nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N( time_eps * ones), self.var(time_eps * ones) log_frac_sigma2_1, log_frac_sigma2_eps = torch.log( self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps / sigma2_eps) var_N_t = (1.0 - self.sigma2_min) / ( 1.0 - torch.exp(rho * (log_frac_sigma2_1 + log_frac_sigma2_eps) - log_frac_sigma2_eps)) t = self.inv_var_N(var_N_t) var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = obj_weight_t_ll = 0.5 * ( log_frac_sigma2_1 + log_frac_sigma2_eps) * self.var_N(t) / (1.0 - self.sigma2_min) elif iw_sample_mode == 'drop_all_uniform': # uniform t sampling - likelihood obj. for q, all-prefactors-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = torch.ones(1, device=dist_util.dev()) obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'drop_all_iw': # importance sampling for all-pref.-dropped obj. - likelihood obj. for q, all-pref.-dropped obj. for p ones = torch.ones_like(rho, device=dist_util.dev()) nsigma2_1, nsigma2_eps, sigma2_eps = self.var_N(ones), self.var_N( time_eps * ones), self.var(time_eps * ones) log_frac_sigma2_1, log_frac_sigma2_eps = torch.log( self.sigma2_max / nsigma2_1), torch.log(nsigma2_eps / sigma2_eps) var_N_t = (1.0 - self.sigma2_min) / ( 1.0 - torch.exp(rho * (log_frac_sigma2_1 + log_frac_sigma2_eps) - log_frac_sigma2_eps)) t = self.inv_var_N(var_N_t) var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t_ll = 0.5 * (log_frac_sigma2_1 + log_frac_sigma2_eps) * self.var_N(t) / ( 1.0 - self.sigma2_min) obj_weight_t = 2.0 * obj_weight_t_ll / np.log( self.sigma2_max / self.sigma2_min) elif iw_sample_mode == 'drop_sigma2t_iw': # importance sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p ones = torch.ones_like(rho, device=dist_util.dev()) nsigma2_1, nsigma2_eps = self.var_N(ones), self.var_N(time_eps * ones) var_N_t = torch.exp(rho * torch.log(nsigma2_1) + (1 - rho) * torch.log(nsigma2_eps)) t = self.inv_var_N(var_N_t) var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = 0.5 * torch.log( nsigma2_1 / nsigma2_eps) * self.var_N(t) obj_weight_t_ll = obj_weight_t / var_t elif iw_sample_mode == 'drop_sigma2t_uniform': # uniform sampling for inv_sigma2_t-dropped obj. - likelihood obj. for q, inv_sigma2_t-dropped obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = g2_t / 2.0 obj_weight_t_ll = g2_t / (2.0 * var_t) elif iw_sample_mode == 'rescale_iw': # uniform sampling for 1/(1-sigma2_t) resc. obj. - likelihood obj. for q, 1/(1-sigma2_t) resc. obj. for p t = rho * (1. - time_eps) + time_eps var_t, m_t, g2_t = self.var(t), self.e2int_f(t), self.g2(t) obj_weight_t = 0.5 / (1.0 - var_t) obj_weight_t_ll = g2_t / (2.0 * var_t) else: raise ValueError( "Unrecognized importance sampling type: {}".format( iw_sample_mode)) return t, var_t.view(-1, 1, 1, 1), m_t.view(-1, 1, 1, 1), obj_weight_t.view(-1, 1, 1, 1), \ obj_weight_t_ll.view(-1, 1, 1, 1), g2_t.view(-1, 1, 1, 1) class DiffusionGeometric(DiffusionBase): """ Diffusion implementation with dz = -0.5 * beta(t) * z * dt + sqrt(beta(t)) * dW SDE and geometric progression of variance. This is our new diffusion. """ def __init__(self, args): super().__init__(args) self.sigma2_min = args.sde_sigma2_min self.sigma2_max = args.sde_sigma2_max def f(self, t): return -0.5 * self.g2(t) def g2(self, t): sigma2_geom = self.sigma2_min * ( (self.sigma2_max / self.sigma2_min)**t) log_term = np.log(self.sigma2_max / self.sigma2_min) return sigma2_geom * log_term / (1.0 - self.sigma2_0 + self.sigma2_min - sigma2_geom) def var(self, t): return self.sigma2_min * ((self.sigma2_max / self.sigma2_min)** t) - self.sigma2_min + self.sigma2_0 def e2int_f(self, t): return torch.sqrt(1.0 + self.sigma2_min * (1.0 - (self.sigma2_max / self.sigma2_min)**t) / (1.0 - self.sigma2_0)) def inv_var(self, var): return torch.log( (var + self.sigma2_min - self.sigma2_0) / self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min) def mixing_component(self, x_noisy, var_t, t, enabled): if enabled: return torch.sqrt(var_t) * x_noisy else: return None class DiffusionVPSDE(DiffusionBase): """ Diffusion implementation of the VPSDE. This uses the same SDE like DiffusionGeometric but with linear beta(t). Note that we need to scale beta_start and beta_end by 1000 relative to JH's DDPM values, since our t is in [0,1]. """ def __init__(self, args): super().__init__(args) # self.beta_start = args.sde_beta_start # 0.1 # self.beta_end = args.sde_beta_end # 20 # ! hard coded, in the scale of 1000. # beta_start = scale * 0.0001 # beta_end = scale * 0.02 self.beta_start = 0.1 self.beta_end = 20 # auxiliary constants self.time_eps = args.sde_time_eps # 0.01 by default in LSGM. Any influence? self.delta_beta_half = torch.tensor(0.5 * (self.beta_end - self.beta_start), device=dist_util.dev()) self.beta_frac = torch.tensor(self.beta_start / (self.beta_end - self.beta_start), device=dist_util.dev()) self.const_aq = (1.0 - self.sigma2_0) * torch.exp( 0.5 * self.beta_frac) * torch.sqrt( 0.25 * np.pi / self.delta_beta_half) self.const_erf = torch.erf( torch.sqrt(self.delta_beta_half) * (self.time_eps + self.beta_frac)) self.const_norm = self.const_aq * (torch.erf( torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf) self.const_norm_2 = torch.erf( torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf def f(self, t): return -0.5 * self.g2(t) def g2(self, t): return self.beta_start + (self.beta_end - self.beta_start) * t def var(self, t): return 1.0 - (1.0 - self.sigma2_0 ) * torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t) def e2int_f(self, t): return torch.exp(-0.5 * self.beta_start * t - 0.25 * (self.beta_end - self.beta_start) * t * t) def inv_var(self, var): c = torch.log((1 - var) / (1 - self.sigma2_0)) a = self.beta_end - self.beta_start t = (-self.beta_start + torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a return t def mixing_component(self, x_noisy, var_t, t, enabled): if enabled: return torch.sqrt(var_t) * x_noisy else: return None def mixing_component_x0(self, x_noisy, var_t, t, enabled): if enabled: # return torch.sqrt(var_t) * x_noisy return torch.sqrt(1-var_t) * x_noisy # zt * alpha_t else: return None class DiffusionSubVPSDE(DiffusionBase): """ Diffusion implementation of the sub-VPSDE. Note that this uses a different SDE compared to the above two diffusions. """ def __init__(self, args): super().__init__(args) self.beta_start = args.sde_beta_start self.beta_end = args.sde_beta_end # auxiliary constants (assumes regular VPSDE) self.time_eps = args.sde_time_eps self.delta_beta_half = torch.tensor(0.5 * (self.beta_end - self.beta_start), device=dist_util.dev()) self.beta_frac = torch.tensor(self.beta_start / (self.beta_end - self.beta_start), device=dist_util.dev()) self.const_aq = (1.0 - self.sigma2_0) * torch.exp( 0.5 * self.beta_frac) * torch.sqrt( 0.25 * np.pi / self.delta_beta_half) self.const_erf = torch.erf( torch.sqrt(self.delta_beta_half) * (self.time_eps + self.beta_frac)) self.const_norm = self.const_aq * (torch.erf( torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf) self.const_norm_2 = torch.erf( torch.sqrt(self.delta_beta_half) * (1.0 + self.beta_frac)) - self.const_erf def f(self, t): return -0.5 * self.beta(t) def g2(self, t): return self.beta(t) * ( 1.0 - torch.exp(-2.0 * self.beta_start * t - (self.beta_end - self.beta_start) * t * t)) def var(self, t): int_term = torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t) return torch.square(1.0 - int_term) + self.sigma2_0 * int_term def e2int_f(self, t): return torch.exp(-0.5 * self.beta_start * t - 0.25 * (self.beta_end - self.beta_start) * t * t) def beta(self, t): """ auxiliary beta function """ return self.beta_start + (self.beta_end - self.beta_start) * t def inv_var(self, var): raise NotImplementedError def mixing_component(self, x_noisy, var_t, t, enabled): if enabled: int_term = torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t).view(-1, 1, 1, 1) return torch.sqrt(var_t) * x_noisy / ( torch.square(1.0 - int_term) + int_term) else: return None def var_vpsde(self, t): return 1.0 - (1.0 - self.sigma2_0 ) * torch.exp(-self.beta_start * t - 0.5 * (self.beta_end - self.beta_start) * t * t) def inv_var_vpsde(self, var): c = torch.log((1 - var) / (1 - self.sigma2_0)) a = self.beta_end - self.beta_start t = (-self.beta_start + torch.sqrt(np.square(self.beta_start) - 2 * a * c)) / a return t class DiffusionVESDE(DiffusionBase): """ Diffusion implementation of the VESDE with dz = sqrt(beta(t)) * dW """ def __init__(self, args): super().__init__(args) self.sigma2_min = args.sde_sigma2_min self.sigma2_max = args.sde_sigma2_max assert self.sigma2_min == self.sigma2_0, "VESDE was proposed implicitly assuming sigma2_min = sigma2_0!" def f(self, t): return torch.zeros_like(t, device=dist_util.dev()) def g2(self, t): return self.sigma2_min * np.log(self.sigma2_max / self.sigma2_min) * ( (self.sigma2_max / self.sigma2_min)**t) def var(self, t): return self.sigma2_min * ((self.sigma2_max / self.sigma2_min)** t) - self.sigma2_min + self.sigma2_0 def e2int_f(self, t): return torch.ones_like(t, device=dist_util.dev()) def inv_var(self, var): return torch.log( (var + self.sigma2_min - self.sigma2_0) / self.sigma2_min) / np.log(self.sigma2_max / self.sigma2_min) def mixing_component(self, x_noisy, var_t, t, enabled): if enabled: return torch.sqrt(var_t) * x_noisy / (self.sigma2_min * ( (self.sigma2_max / self.sigma2_min)**t.view(-1, 1, 1, 1)) - self.sigma2_min + 1.0) else: return None def var_N(self, t): return 1.0 - self.sigma2_min + self.sigma2_min * ( (self.sigma2_max / self.sigma2_min)**t) def inv_var_N(self, var): return torch.log( (var + self.sigma2_min - 1.0) / self.sigma2_min) / np.log( self.sigma2_max / self.sigma2_min)