|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Custom PyTorch ops for efficient resampling of 2D images.""" |
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
|
|
from .. import custom_ops |
|
from .. import misc |
|
from . import conv2d_gradfix |
|
|
|
|
|
|
|
_plugin = None |
|
|
|
|
|
def _init(): |
|
global _plugin |
|
if _plugin is None: |
|
_plugin = custom_ops.get_plugin( |
|
module_name='upfirdn2d_plugin', |
|
sources=['upfirdn2d.cpp', 'upfirdn2d.cu'], |
|
headers=['upfirdn2d.h'], |
|
source_dir=os.path.dirname(__file__), |
|
extra_cuda_cflags=['--use_fast_math'], |
|
) |
|
return True |
|
|
|
|
|
def _parse_scaling(scaling): |
|
if isinstance(scaling, int): |
|
scaling = [scaling, scaling] |
|
assert isinstance(scaling, (list, tuple)) |
|
assert all(isinstance(x, int) for x in scaling) |
|
sx, sy = scaling |
|
assert sx >= 1 and sy >= 1 |
|
return sx, sy |
|
|
|
|
|
def _parse_padding(padding): |
|
if isinstance(padding, int): |
|
padding = [padding, padding] |
|
assert isinstance(padding, (list, tuple)) |
|
assert all(isinstance(x, int) for x in padding) |
|
if len(padding) == 2: |
|
padx, pady = padding |
|
padding = [padx, padx, pady, pady] |
|
padx0, padx1, pady0, pady1 = padding |
|
return padx0, padx1, pady0, pady1 |
|
|
|
|
|
def _get_filter_size(f): |
|
if f is None: |
|
return 1, 1 |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
fw = f.shape[-1] |
|
fh = f.shape[0] |
|
with misc.suppress_tracer_warnings(): |
|
fw = int(fw) |
|
fh = int(fh) |
|
misc.assert_shape(f, [fh, fw][:f.ndim]) |
|
assert fw >= 1 and fh >= 1 |
|
return fw, fh |
|
|
|
|
|
|
|
|
|
|
|
def setup_filter(f, |
|
device=torch.device('cpu'), |
|
normalize=True, |
|
flip_filter=False, |
|
gain=1, |
|
separable=None): |
|
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`. |
|
|
|
Args: |
|
f: Torch tensor, numpy array, or python list of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), |
|
`[]` (impulse), or |
|
`None` (identity). |
|
device: Result device (default: cpu). |
|
normalize: Normalize the filter so that it retains the magnitude |
|
for constant input signal (DC)? (default: True). |
|
flip_filter: Flip the filter? (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
separable: Return a separable filter? (default: select automatically). |
|
|
|
Returns: |
|
Float32 tensor of the shape |
|
`[filter_height, filter_width]` (non-separable) or |
|
`[filter_taps]` (separable). |
|
""" |
|
|
|
if f is None: |
|
f = 1 |
|
f = torch.as_tensor(f, dtype=torch.float32) |
|
assert f.ndim in [0, 1, 2] |
|
assert f.numel() > 0 |
|
if f.ndim == 0: |
|
f = f[np.newaxis] |
|
|
|
|
|
if separable is None: |
|
separable = (f.ndim == 1 and f.numel() >= 8) |
|
if f.ndim == 1 and not separable: |
|
f = f.ger(f) |
|
assert f.ndim == (1 if separable else 2) |
|
|
|
|
|
if normalize: |
|
f /= f.sum() |
|
if flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
f = f * (gain**(f.ndim / 2)) |
|
f = f.to(device=device) |
|
return f |
|
|
|
|
|
|
|
|
|
|
|
def upfirdn2d(x, |
|
f, |
|
up=1, |
|
down=1, |
|
padding=0, |
|
flip_filter=False, |
|
gain=1, |
|
impl='cuda'): |
|
r"""Pad, upsample, filter, and downsample a batch of 2D images. |
|
|
|
Performs the following sequence of operations for each channel: |
|
|
|
1. Upsample the image by inserting N-1 zeros after each pixel (`up`). |
|
|
|
2. Pad the image with the specified number of zeros on each side (`padding`). |
|
Negative padding corresponds to cropping the image. |
|
|
|
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it |
|
so that the footprint of all output pixels lies within the input image. |
|
|
|
4. Downsample the image by keeping every Nth pixel (`down`). |
|
|
|
This sequence of operations bears close resemblance to scipy.signal.upfirdn(). |
|
The fused op is considerably more efficient than performing the same calculation |
|
using standard PyTorch ops. It supports gradients of arbitrary order. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
down: Integer downsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the upsampled image. Can be a single number |
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
assert isinstance(x, torch.Tensor) |
|
assert impl in ['ref', 'cuda'] |
|
if impl == 'cuda' and x.device.type == 'cuda' and _init(): |
|
return _upfirdn2d_cuda(up=up, |
|
down=down, |
|
padding=padding, |
|
flip_filter=flip_filter, |
|
gain=gain).apply(x, f) |
|
return _upfirdn2d_ref(x, |
|
f, |
|
up=up, |
|
down=down, |
|
padding=padding, |
|
flip_filter=flip_filter, |
|
gain=gain) |
|
|
|
|
|
|
|
|
|
|
|
@misc.profiled_function |
|
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): |
|
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops. |
|
""" |
|
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 4 |
|
if f is None: |
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
assert f.dtype == torch.float32 and not f.requires_grad |
|
batch_size, num_channels, in_height, in_width = x.shape |
|
upx, upy = _parse_scaling(up) |
|
downx, downy = _parse_scaling(down) |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
|
|
|
|
upW = in_width * upx + padx0 + padx1 |
|
upH = in_height * upy + pady0 + pady1 |
|
assert upW >= f.shape[-1] and upH >= f.shape[0] |
|
|
|
|
|
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) |
|
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) |
|
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) |
|
|
|
|
|
x = torch.nn.functional.pad( |
|
x, [max(padx0, 0), |
|
max(padx1, 0), |
|
max(pady0, 0), |
|
max(pady1, 0)]) |
|
x = x[:, :, |
|
max(-pady0, 0):x.shape[2] - max(-pady1, 0), |
|
max(-padx0, 0):x.shape[3] - max(-padx1, 0)] |
|
|
|
|
|
f = f * (gain**(f.ndim / 2)) |
|
f = f.to(x.dtype) |
|
if not flip_filter: |
|
f = f.flip(list(range(f.ndim))) |
|
|
|
|
|
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) |
|
if f.ndim == 4: |
|
x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels) |
|
else: |
|
x = conv2d_gradfix.conv2d(input=x, |
|
weight=f.unsqueeze(2), |
|
groups=num_channels) |
|
x = conv2d_gradfix.conv2d(input=x, |
|
weight=f.unsqueeze(3), |
|
groups=num_channels) |
|
|
|
|
|
x = x[:, :, ::downy, ::downx] |
|
return x |
|
|
|
|
|
|
|
|
|
_upfirdn2d_cuda_cache = dict() |
|
|
|
|
|
def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1): |
|
"""Fast CUDA implementation of `upfirdn2d()` using custom ops. |
|
""" |
|
|
|
upx, upy = _parse_scaling(up) |
|
downx, downy = _parse_scaling(down) |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
|
|
|
|
key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, |
|
gain) |
|
if key in _upfirdn2d_cuda_cache: |
|
return _upfirdn2d_cuda_cache[key] |
|
|
|
|
|
class Upfirdn2dCuda(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, f): |
|
assert isinstance(x, torch.Tensor) and x.ndim == 4 |
|
if f is None: |
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) |
|
if f.ndim == 1 and f.shape[0] == 1: |
|
f = f.square().unsqueeze( |
|
0) |
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] |
|
y = x |
|
if f.ndim == 2: |
|
y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, |
|
padx1, pady0, pady1, flip_filter, gain) |
|
else: |
|
y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, |
|
padx0, padx1, 0, 0, flip_filter, 1.0) |
|
y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, |
|
0, pady0, pady1, flip_filter, gain) |
|
ctx.save_for_backward(f) |
|
ctx.x_shape = x.shape |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, dy): |
|
f, = ctx.saved_tensors |
|
_, _, ih, iw = ctx.x_shape |
|
_, _, oh, ow = dy.shape |
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
fw - padx0 - 1, |
|
iw * upx - ow * downx + padx0 - upx + 1, |
|
fh - pady0 - 1, |
|
ih * upy - oh * downy + pady0 - upy + 1, |
|
] |
|
dx = None |
|
df = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
dx = _upfirdn2d_cuda(up=down, |
|
down=up, |
|
padding=p, |
|
flip_filter=(not flip_filter), |
|
gain=gain).apply(dy, f) |
|
|
|
assert not ctx.needs_input_grad[1] |
|
return dx, df |
|
|
|
|
|
_upfirdn2d_cuda_cache[key] = Upfirdn2dCuda |
|
return Upfirdn2dCuda |
|
|
|
|
|
|
|
|
|
|
|
def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'): |
|
r"""Filter a batch of 2D images using the given 2D FIR filter. |
|
|
|
By default, the result is padded so that its shape matches the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
padding: Padding with respect to the output. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + fw // 2, |
|
padx1 + (fw - 1) // 2, |
|
pady0 + fh // 2, |
|
pady1 + (fh - 1) // 2, |
|
] |
|
return upfirdn2d(x, |
|
f, |
|
padding=p, |
|
flip_filter=flip_filter, |
|
gain=gain, |
|
impl=impl) |
|
|
|
|
|
|
|
|
|
|
|
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'): |
|
r"""Upsample a batch of 2D images using the given 2D FIR filter. |
|
|
|
By default, the result is padded so that its shape is a multiple of the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
up: Integer upsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the output. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
upx, upy = _parse_scaling(up) |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + (fw + upx - 1) // 2, |
|
padx1 + (fw - upx) // 2, |
|
pady0 + (fh + upy - 1) // 2, |
|
pady1 + (fh - upy) // 2, |
|
] |
|
return upfirdn2d(x, |
|
f, |
|
up=up, |
|
padding=p, |
|
flip_filter=flip_filter, |
|
gain=gain * upx * upy, |
|
impl=impl) |
|
|
|
|
|
|
|
|
|
|
|
def downsample2d(x, |
|
f, |
|
down=2, |
|
padding=0, |
|
flip_filter=False, |
|
gain=1, |
|
impl='cuda'): |
|
r"""Downsample a batch of 2D images using the given 2D FIR filter. |
|
|
|
By default, the result is padded so that its shape is a fraction of the input. |
|
User-specified padding is applied on top of that, with negative values |
|
indicating cropping. Pixels outside the image are assumed to be zero. |
|
|
|
Args: |
|
x: Float32/float64/float16 input tensor of the shape |
|
`[batch_size, num_channels, in_height, in_width]`. |
|
f: Float32 FIR filter of the shape |
|
`[filter_height, filter_width]` (non-separable), |
|
`[filter_taps]` (separable), or |
|
`None` (identity). |
|
down: Integer downsampling factor. Can be a single int or a list/tuple |
|
`[x, y]` (default: 1). |
|
padding: Padding with respect to the input. Can be a single number or a |
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` |
|
(default: 0). |
|
flip_filter: False = convolution, True = correlation (default: False). |
|
gain: Overall scaling factor for signal magnitude (default: 1). |
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). |
|
|
|
Returns: |
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. |
|
""" |
|
downx, downy = _parse_scaling(down) |
|
padx0, padx1, pady0, pady1 = _parse_padding(padding) |
|
fw, fh = _get_filter_size(f) |
|
p = [ |
|
padx0 + (fw - downx + 1) // 2, |
|
padx1 + (fw - downx) // 2, |
|
pady0 + (fh - downy + 1) // 2, |
|
pady1 + (fh - downy) // 2, |
|
] |
|
return upfirdn2d(x, |
|
f, |
|
down=down, |
|
padding=p, |
|
flip_filter=flip_filter, |
|
gain=gain, |
|
impl=impl) |
|
|
|
|
|
|
|
|