|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Custom replacement for `torch.nn.functional.conv2d` that supports |
|
arbitrarily high order gradients with zero performance penalty.""" |
|
|
|
import contextlib |
|
import torch |
|
from pdb import set_trace as st |
|
import traceback |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enabled = False |
|
weight_gradients_disabled = False |
|
|
|
|
|
@contextlib.contextmanager |
|
def no_weight_gradients(disable=True): |
|
global weight_gradients_disabled |
|
old = weight_gradients_disabled |
|
if disable: |
|
weight_gradients_disabled = True |
|
yield |
|
weight_gradients_disabled = old |
|
|
|
|
|
|
|
|
|
|
|
def conv2d(input, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1): |
|
if _should_use_custom_op(input): |
|
return _conv2d_gradfix(transpose=False, |
|
weight_shape=weight.shape, |
|
stride=stride, |
|
padding=padding, |
|
output_padding=0, |
|
dilation=dilation, |
|
groups=groups).apply(input, weight, bias) |
|
return torch.nn.functional.conv2d(input=input, |
|
weight=weight, |
|
bias=bias, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups) |
|
|
|
|
|
def conv_transpose2d(input, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=0, |
|
output_padding=0, |
|
groups=1, |
|
dilation=1): |
|
if _should_use_custom_op(input): |
|
return _conv2d_gradfix(transpose=True, |
|
weight_shape=weight.shape, |
|
stride=stride, |
|
padding=padding, |
|
output_padding=output_padding, |
|
groups=groups, |
|
dilation=dilation).apply(input, weight, bias) |
|
return torch.nn.functional.conv_transpose2d(input=input, |
|
weight=weight, |
|
bias=bias, |
|
stride=stride, |
|
padding=padding, |
|
output_padding=output_padding, |
|
groups=groups, |
|
dilation=dilation) |
|
|
|
|
|
|
|
|
|
|
|
def _should_use_custom_op(input): |
|
assert isinstance(input, torch.Tensor) |
|
if (not enabled) or (not torch.backends.cudnn.enabled): |
|
return False |
|
if input.device.type != 'cuda': |
|
return False |
|
return True |
|
|
|
|
|
def _tuple_of_ints(xs, ndim): |
|
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs, ) * ndim |
|
assert len(xs) == ndim |
|
assert all(isinstance(x, int) for x in xs) |
|
return xs |
|
|
|
|
|
|
|
|
|
_conv2d_gradfix_cache = dict() |
|
_null_tensor = torch.empty([0]) |
|
|
|
|
|
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, |
|
dilation, groups): |
|
|
|
ndim = 2 |
|
weight_shape = tuple(weight_shape) |
|
stride = _tuple_of_ints(stride, ndim) |
|
padding = _tuple_of_ints(padding, ndim) |
|
output_padding = _tuple_of_ints(output_padding, ndim) |
|
dilation = _tuple_of_ints(dilation, ndim) |
|
|
|
|
|
key = (transpose, weight_shape, stride, padding, output_padding, dilation, |
|
groups) |
|
if key in _conv2d_gradfix_cache: |
|
return _conv2d_gradfix_cache[key] |
|
|
|
|
|
assert groups >= 1 |
|
assert len(weight_shape) == ndim + 2 |
|
assert all(stride[i] >= 1 for i in range(ndim)) |
|
assert all(padding[i] >= 0 for i in range(ndim)) |
|
assert all(dilation[i] >= 0 for i in range(ndim)) |
|
if not transpose: |
|
assert all(output_padding[i] == 0 for i in range(ndim)) |
|
else: |
|
assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) |
|
for i in range(ndim)) |
|
|
|
|
|
common_kwargs = dict(stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=groups) |
|
|
|
def calc_output_padding(input_shape, output_shape): |
|
if transpose: |
|
return [0, 0] |
|
return [ |
|
input_shape[i + 2] - (output_shape[i + 2] - 1) * stride[i] - |
|
(1 - 2 * padding[i]) - dilation[i] * (weight_shape[i + 2] - 1) |
|
for i in range(ndim) |
|
] |
|
|
|
|
|
class Conv2d(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input, weight, bias): |
|
assert weight.shape == weight_shape |
|
ctx.save_for_backward( |
|
input if weight.requires_grad else _null_tensor, |
|
weight if input.requires_grad else _null_tensor, |
|
) |
|
ctx.input_shape = input.shape |
|
|
|
|
|
if weight_shape[2:] == stride == dilation == ( |
|
1, 1) and padding == ( |
|
0, 0) and torch.cuda.get_device_capability( |
|
input.device) < (8, 0): |
|
a = weight.reshape(groups, weight_shape[0] // groups, |
|
weight_shape[1]) |
|
b = input.reshape(input.shape[0], groups, |
|
input.shape[1] // groups, -1) |
|
c = (a.transpose(1, 2) if transpose else a) @ b.permute( |
|
1, 2, 0, 3).flatten(2) |
|
c = c.reshape(-1, input.shape[0], |
|
*input.shape[2:]).transpose(0, 1) |
|
c = c if bias is None else c + bias.unsqueeze(0).unsqueeze( |
|
2).unsqueeze(3) |
|
return c.contiguous( |
|
memory_format=(torch.channels_last if input.stride(1) == |
|
1 else torch.contiguous_format)) |
|
|
|
|
|
if transpose: |
|
return torch.nn.functional.conv_transpose2d( |
|
input=input, |
|
weight=weight, |
|
bias=bias, |
|
output_padding=output_padding, |
|
**common_kwargs) |
|
return torch.nn.functional.conv2d(input=input, |
|
weight=weight, |
|
bias=bias, |
|
**common_kwargs) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
input, weight = ctx.saved_tensors |
|
input_shape = ctx.input_shape |
|
grad_input = None |
|
grad_weight = None |
|
grad_bias = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
p = calc_output_padding(input_shape=input_shape, |
|
output_shape=grad_output.shape) |
|
op = _conv2d_gradfix(transpose=(not transpose), |
|
weight_shape=weight_shape, |
|
output_padding=p, |
|
**common_kwargs) |
|
grad_input = op.apply(grad_output, weight, None) |
|
assert grad_input.shape == input_shape |
|
|
|
if ctx.needs_input_grad[1] and not weight_gradients_disabled: |
|
grad_weight = Conv2dGradWeight.apply(grad_output, input, |
|
weight) |
|
assert grad_weight.shape == weight_shape |
|
|
|
if ctx.needs_input_grad[2]: |
|
grad_bias = grad_output.sum([0, 2, 3]) |
|
|
|
return grad_input, grad_weight, grad_bias |
|
|
|
|
|
class Conv2dGradWeight(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, grad_output, input, weight): |
|
ctx.save_for_backward( |
|
grad_output if input.requires_grad else _null_tensor, |
|
input if grad_output.requires_grad else _null_tensor, |
|
) |
|
ctx.grad_output_shape = grad_output.shape |
|
ctx.input_shape = input.shape |
|
|
|
|
|
if weight_shape[2:] == stride == dilation == ( |
|
1, 1) and padding == (0, 0): |
|
a = grad_output.reshape(grad_output.shape[0], groups, |
|
grad_output.shape[1] // groups, |
|
-1).permute(1, 2, 0, 3).flatten(2) |
|
b = input.reshape(input.shape[0], groups, |
|
input.shape[1] // groups, |
|
-1).permute(1, 2, 0, 3).flatten(2) |
|
c = (b @ a.transpose(1, 2) if transpose else |
|
a @ b.transpose(1, 2)).reshape(weight_shape) |
|
return c.contiguous( |
|
memory_format=(torch.channels_last if input.stride(1) == |
|
1 else torch.contiguous_format)) |
|
|
|
|
|
|
|
|
|
|
|
return torch.ops.aten.convolution_backward( |
|
grad_output=grad_output, |
|
input=input, |
|
weight=weight, |
|
bias_sizes=None, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
transposed=transpose, |
|
output_padding=output_padding, |
|
groups=groups, |
|
output_mask=[False, True, False])[1] |
|
|
|
@staticmethod |
|
def backward(ctx, grad2_grad_weight): |
|
grad_output, input = ctx.saved_tensors |
|
grad_output_shape = ctx.grad_output_shape |
|
input_shape = ctx.input_shape |
|
grad2_grad_output = None |
|
grad2_input = None |
|
|
|
if ctx.needs_input_grad[0]: |
|
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, |
|
None) |
|
assert grad2_grad_output.shape == grad_output_shape |
|
|
|
if ctx.needs_input_grad[1]: |
|
p = calc_output_padding(input_shape=input_shape, |
|
output_shape=grad_output_shape) |
|
op = _conv2d_gradfix(transpose=(not transpose), |
|
weight_shape=weight_shape, |
|
output_padding=p, |
|
**common_kwargs) |
|
grad2_input = op.apply(grad_output, grad2_grad_weight, None) |
|
assert grad2_input.shape == input_shape |
|
|
|
return grad2_grad_output, grad2_input |
|
|
|
_conv2d_gradfix_cache[key] = Conv2d |
|
return Conv2d |
|
|
|
|
|
|
|
|