|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import sys |
|
from datetime import datetime |
|
import numpy as np |
|
import random |
|
|
|
def inverse_sigmoid(x): |
|
return torch.log(x/(1-x)) |
|
|
|
def PILtoTorch(pil_image, resolution): |
|
resized_image_PIL = pil_image.resize(resolution) |
|
resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 |
|
if len(resized_image.shape) == 3: |
|
return resized_image.permute(2, 0, 1) |
|
else: |
|
return resized_image.unsqueeze(dim=-1).permute(2, 0, 1) |
|
|
|
def get_expon_lr_func( |
|
lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 |
|
): |
|
""" |
|
Copied from Plenoxels |
|
|
|
Continuous learning rate decay function. Adapted from JaxNeRF |
|
The returned rate is lr_init when step=0 and lr_final when step=max_steps, and |
|
is log-linearly interpolated elsewhere (equivalent to exponential decay). |
|
If lr_delay_steps>0 then the learning rate will be scaled by some smooth |
|
function of lr_delay_mult, such that the initial learning rate is |
|
lr_init*lr_delay_mult at the beginning of optimization but will be eased back |
|
to the normal learning rate when steps>lr_delay_steps. |
|
:param conf: config subtree 'lr' or similar |
|
:param max_steps: int, the number of steps during optimization. |
|
:return HoF which takes step as input |
|
""" |
|
|
|
def helper(step): |
|
if step < 0 or (lr_init == 0.0 and lr_final == 0.0): |
|
|
|
return 0.0 |
|
if lr_delay_steps > 0: |
|
|
|
delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( |
|
0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) |
|
) |
|
else: |
|
delay_rate = 1.0 |
|
t = np.clip(step / max_steps, 0, 1) |
|
log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) |
|
return delay_rate * log_lerp |
|
|
|
return helper |
|
|
|
def strip_lowerdiag(L): |
|
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") |
|
|
|
uncertainty[:, 0] = L[:, 0, 0] |
|
uncertainty[:, 1] = L[:, 0, 1] |
|
uncertainty[:, 2] = L[:, 0, 2] |
|
uncertainty[:, 3] = L[:, 1, 1] |
|
uncertainty[:, 4] = L[:, 1, 2] |
|
uncertainty[:, 5] = L[:, 2, 2] |
|
return uncertainty |
|
|
|
def strip_symmetric(sym): |
|
return strip_lowerdiag(sym) |
|
|
|
def standardize_quaternion(quaternions: torch.Tensor) -> torch.Tensor: |
|
""" |
|
From Pytorch3d |
|
Convert a unit quaternion to a standard form: one in which the real |
|
part is non negative. |
|
|
|
Args: |
|
quaternions: Quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Standardized quaternions as tensor of shape (..., 4). |
|
""" |
|
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) |
|
|
|
def quaternion_raw_multiply(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: |
|
""" |
|
From Pytorch3d |
|
Multiply two quaternions. |
|
Usual torch rules for broadcasting apply. |
|
|
|
Args: |
|
a: Quaternions as tensor of shape (..., 4), real part first. |
|
b: Quaternions as tensor of shape (..., 4), real part first. |
|
|
|
Returns: |
|
The product of a and b, a tensor of quaternions shape (..., 4). |
|
""" |
|
aw, ax, ay, az = torch.unbind(a, -1) |
|
bw, bx, by, bz = torch.unbind(b, -1) |
|
ow = aw * bw - ax * bx - ay * by - az * bz |
|
ox = aw * bx + ax * bw + ay * bz - az * by |
|
oy = aw * by - ax * bz + ay * bw + az * bx |
|
oz = aw * bz + ax * by - ay * bx + az * bw |
|
return torch.stack((ow, ox, oy, oz), -1) |
|
|
|
|
|
|
|
def matrix_to_quaternion(M: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Matrix-to-quaternion conversion method. Equation taken from |
|
https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm |
|
Args: |
|
M: rotation matrices, (3 x 3) |
|
Returns: |
|
q: quaternion of shape (4) |
|
""" |
|
tr = 1 + M[ 0, 0] + M[ 1, 1] + M[ 2, 2] |
|
|
|
if tr > 0: |
|
r = torch.sqrt(tr) / 2.0 |
|
x = ( M[ 2, 1] - M[ 1, 2] ) / ( 4 * r ) |
|
y = ( M[ 0, 2] - M[ 2, 0] ) / ( 4 * r ) |
|
z = ( M[ 1, 0] - M[ 0, 1] ) / ( 4 * r ) |
|
elif ( M[ 0, 0] > M[ 1, 1]) and (M[ 0, 0] > M[ 2, 2]): |
|
S = torch.sqrt(1.0 + M[ 0, 0] - M[ 1, 1] - M[ 2, 2]) * 2 |
|
r = (M[ 2, 1] - M[ 1, 2]) / S |
|
x = 0.25 * S |
|
y = (M[ 0, 1] + M[ 1, 0]) / S |
|
z = (M[ 0, 2] + M[ 2, 0]) / S |
|
elif M[ 1, 1] > M[ 2, 2]: |
|
S = torch.sqrt(1.0 + M[ 1, 1] - M[ 0, 0] - M[ 2, 2]) * 2 |
|
r = (M[ 0, 2] - M[ 2, 0]) / S |
|
x = (M[ 0, 1] + M[ 1, 0]) / S |
|
y = 0.25 * S |
|
z = (M[ 1, 2] + M[ 2, 1]) / S |
|
else: |
|
S = torch.sqrt(1.0 + M[ 2, 2] - M[ 0, 0] - M[ 1, 1]) * 2 |
|
r = (M[ 1, 0] - M[ 0, 1]) / S |
|
x = (M[ 0, 2] + M[ 2, 0]) / S |
|
y = (M[ 1, 2] + M[ 2, 1]) / S |
|
z = 0.25 * S |
|
|
|
return torch.stack([r, x, y, z], dim=-1) |
|
|
|
def build_rotation(r): |
|
norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) |
|
|
|
q = r / norm[:, None] |
|
|
|
R = torch.zeros((q.size(0), 3, 3), device='cuda') |
|
|
|
r = q[:, 0] |
|
x = q[:, 1] |
|
y = q[:, 2] |
|
z = q[:, 3] |
|
|
|
R[:, 0, 0] = 1 - 2 * (y*y + z*z) |
|
R[:, 0, 1] = 2 * (x*y - r*z) |
|
R[:, 0, 2] = 2 * (x*z + r*y) |
|
R[:, 1, 0] = 2 * (x*y + r*z) |
|
R[:, 1, 1] = 1 - 2 * (x*x + z*z) |
|
R[:, 1, 2] = 2 * (y*z - r*x) |
|
R[:, 2, 0] = 2 * (x*z - r*y) |
|
R[:, 2, 1] = 2 * (y*z + r*x) |
|
R[:, 2, 2] = 1 - 2 * (x*x + y*y) |
|
return R |
|
|
|
def build_scaling_rotation(s, r): |
|
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") |
|
R = build_rotation(r) |
|
|
|
L[:,0,0] = s[:,0] |
|
L[:,1,1] = s[:,1] |
|
L[:,2,2] = s[:,2] |
|
|
|
L = R @ L |
|
return L |
|
|
|
def safe_state(cfg, silent=False): |
|
old_f = sys.stdout |
|
class F: |
|
def __init__(self, silent): |
|
self.silent = silent |
|
|
|
def write(self, x): |
|
if not self.silent: |
|
if x.endswith("\n"): |
|
old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S"))))) |
|
else: |
|
old_f.write(x) |
|
|
|
def flush(self): |
|
old_f.flush() |
|
|
|
sys.stdout = F(silent) |
|
|
|
random.seed(cfg.general.random_seed) |
|
np.random.seed(cfg.general.random_seed) |
|
torch.manual_seed(cfg.general.random_seed) |
|
device = torch.device("cuda:{}".format(cfg.general.device)) |
|
torch.cuda.set_device(device) |
|
|
|
return device |
|
|