|
import torch
|
|
from pdb import set_trace as st
|
|
from torch import nn
|
|
from .model_irse import Backbone
|
|
from .paths_config import model_paths
|
|
|
|
|
|
class IDLoss(nn.Module):
|
|
|
|
def __init__(self, device):
|
|
|
|
super().__init__()
|
|
print('Loading ResNet ArcFace')
|
|
self.facenet = Backbone(input_size=112,
|
|
num_layers=50,
|
|
drop_ratio=0.6,
|
|
mode='ir_se').to(device)
|
|
|
|
try:
|
|
face_net_model = torch.load(model_paths['ir_se50'],
|
|
map_location=device)
|
|
except Exception as e:
|
|
face_net_model = torch.load(model_paths['ir_se50_hwc'],
|
|
map_location=device)
|
|
|
|
self.facenet.load_state_dict(face_net_model)
|
|
|
|
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
|
self.facenet.eval()
|
|
|
|
def extract_feats(self, x):
|
|
x = x[:, :, 35:223, 32:220]
|
|
x = self.face_pool(x)
|
|
x_feats = self.facenet(x)
|
|
return x_feats
|
|
|
|
def forward(self, y_hat, y, x):
|
|
n_samples, _, H, W = x.shape
|
|
assert H == W == 256, 'idloss needs 256*256 input images'
|
|
|
|
x_feats = self.extract_feats(x)
|
|
y_feats = self.extract_feats(y)
|
|
y_hat_feats = self.extract_feats(y_hat)
|
|
y_feats = y_feats.detach()
|
|
loss = 0
|
|
sim_improvement = 0
|
|
id_logs = []
|
|
count = 0
|
|
for i in range(n_samples):
|
|
diff_target = y_hat_feats[i].dot(y_feats[i])
|
|
diff_input = y_hat_feats[i].dot(x_feats[i])
|
|
diff_views = y_feats[i].dot(x_feats[i])
|
|
id_logs.append({
|
|
'diff_target': float(diff_target),
|
|
'diff_input': float(diff_input),
|
|
'diff_views': float(diff_views)
|
|
})
|
|
loss += 1 - diff_target
|
|
id_diff = float(diff_target) - float(diff_views)
|
|
sim_improvement += id_diff
|
|
count += 1
|
|
|
|
return loss / count, sim_improvement / count, id_logs
|
|
|