|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import math |
|
|
|
from pdb import set_trace as st |
|
|
|
from .dit_models import DiT, DiTBlock, DiT_models, get_2d_sincos_pos_embed |
|
|
|
|
|
class DiT_Triplane_V1(DiT): |
|
""" |
|
1. merge the 3*H*W as L, and 8 as C only |
|
2. pachify, flat into 224*(224*3) with 8 channels for pachify |
|
3. unpachify accordingly |
|
""" |
|
|
|
def __init__(self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
class_dropout_prob=0.1, |
|
num_classes=1000, |
|
learn_sigma=False): |
|
|
|
input_size = (input_size, input_size*3) |
|
super().__init__(input_size, patch_size, in_channels//3, hidden_size, |
|
depth, num_heads, mlp_ratio, class_dropout_prob, |
|
num_classes, learn_sigma) |
|
|
|
def initialize_weights(self): |
|
"""all the same except the PE part |
|
""" |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
pos_embed = get_2d_sincos_pos_embed( |
|
self.pos_embed.shape[-1], self.x_embedder.grid_size) |
|
|
|
self.pos_embed.data.copy_( |
|
torch.from_numpy(pos_embed).float().unsqueeze(0)) |
|
|
|
|
|
|
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
nn.init.constant_(self.x_embedder.proj.bias, 0) |
|
|
|
|
|
if self.y_embedder is not None: |
|
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def unpatchify(self, x): |
|
|
|
""" |
|
x: (N, L, patch_size**2 * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
c = self.out_channels |
|
p = self.x_embedder.patch_size[0] |
|
h = w = int((x.shape[1]//3)**0.5) |
|
assert h * w * 3 == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, 3, p, p, c)) |
|
x = torch.einsum('nhwzpqc->nczhpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], c*3, h * p, h * p)) |
|
return imgs |
|
|
|
def forward(self, x, t, y=None): |
|
""" |
|
Forward pass of DiT. |
|
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (N,) tensor of diffusion timesteps |
|
y: (N,) tensor of class labels |
|
""" |
|
|
|
|
|
x = x.reshape(x.shape[0], -1, 3, x.shape[2], x.shape[3]) |
|
x = x.permute(0,1,3,4,2).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1]*3) |
|
|
|
x = self.x_embedder( |
|
x) + self.pos_embed |
|
t = self.t_embedder(t) |
|
|
|
if self.y_embedder is not None: |
|
assert y is not None |
|
y = self.y_embedder(y, self.training) |
|
c = t + y |
|
else: |
|
c = t |
|
|
|
for block in self.blocks: |
|
x = block(x, c) |
|
|
|
x = self.final_layer(x, c) |
|
x = self.unpatchify(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
class DiT_Triplane_V1_learnedPE(DiT_Triplane_V1): |
|
""" |
|
1. learned PE, default cos/sin wave |
|
""" |
|
|
|
def __init__(self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
class_dropout_prob=0.1, |
|
num_classes=1000, |
|
learn_sigma=True): |
|
super().__init__(input_size, patch_size, in_channels, hidden_size, |
|
depth, num_heads, mlp_ratio, class_dropout_prob, |
|
num_classes, learn_sigma) |
|
|
|
|
|
class DiT_Triplane_V1_fixed3DPE(DiT_Triplane_V1): |
|
""" |
|
1. 3D aware PE, fixed |
|
""" |
|
|
|
def __init__(self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
class_dropout_prob=0.1, |
|
num_classes=1000, |
|
learn_sigma=True): |
|
super().__init__(input_size, patch_size, in_channels, hidden_size, |
|
depth, num_heads, mlp_ratio, class_dropout_prob, |
|
num_classes, learn_sigma) |
|
|
|
|
|
class DiT_Triplane_V1_learned3DPE(DiT_Triplane_V1): |
|
""" |
|
1. init with 3D aware PE, learnable |
|
""" |
|
|
|
def __init__(self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=1152, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
class_dropout_prob=0.1, |
|
num_classes=1000, |
|
learn_sigma=True): |
|
super().__init__(input_size, patch_size, in_channels, hidden_size, |
|
depth, num_heads, mlp_ratio, class_dropout_prob, |
|
num_classes, learn_sigma) |
|
|
|
def V1_Triplane_DiT_S_2(**kwargs): |
|
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) |
|
|
|
def V1_Triplane_DiT_S_4(**kwargs): |
|
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) |
|
|
|
def V1_Triplane_DiT_S_8(**kwargs): |
|
return DiT_Triplane_V1(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) |
|
|
|
def V1_Triplane_DiT_B_8(**kwargs): |
|
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) |
|
|
|
def V1_Triplane_DiT_B_16(**kwargs): |
|
return DiT_Triplane_V1(depth=12, hidden_size=768, patch_size=16, num_heads=12, **kwargs) |
|
|
|
DiT_models.update({ |
|
'v1-T-DiT-S/2': V1_Triplane_DiT_S_2, |
|
'v1-T-DiT-S/4': V1_Triplane_DiT_S_4, |
|
'v1-T-DiT-S/8': V1_Triplane_DiT_S_8, |
|
'v1-T-DiT-B/8': V1_Triplane_DiT_B_8, |
|
'v1-T-DiT-B/16': V1_Triplane_DiT_B_16, |
|
}) |