|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Misc functions. |
|
|
|
Mostly copy-paste from torchvision references or other public repos like DETR: |
|
https://github.com/facebookresearch/detr/blob/master/util/misc.py |
|
""" |
|
import os |
|
import sys |
|
import time |
|
import math |
|
import random |
|
import datetime |
|
import subprocess |
|
from collections import defaultdict, deque |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.distributed as dist |
|
from PIL import ImageFilter, ImageOps |
|
|
|
|
|
class GaussianBlur(object): |
|
""" |
|
Apply Gaussian Blur to the PIL image. |
|
""" |
|
def __init__(self, p=0.5, radius_min=0.1, radius_max=2.): |
|
self.prob = p |
|
self.radius_min = radius_min |
|
self.radius_max = radius_max |
|
|
|
def __call__(self, img): |
|
do_it = random.random() <= self.prob |
|
if not do_it: |
|
return img |
|
|
|
return img.filter( |
|
ImageFilter.GaussianBlur( |
|
radius=random.uniform(self.radius_min, self.radius_max))) |
|
|
|
|
|
class Solarization(object): |
|
""" |
|
Apply Solarization to the PIL image. |
|
""" |
|
def __init__(self, p): |
|
self.p = p |
|
|
|
def __call__(self, img): |
|
if random.random() < self.p: |
|
return ImageOps.solarize(img) |
|
else: |
|
return img |
|
|
|
|
|
def load_pretrained_weights(model, pretrained_weights, checkpoint_key, |
|
model_name, patch_size): |
|
if os.path.isfile(pretrained_weights): |
|
state_dict = torch.load(pretrained_weights, map_location="cpu") |
|
if checkpoint_key is not None and checkpoint_key in state_dict: |
|
print(f"Take key {checkpoint_key} in provided checkpoint dict") |
|
state_dict = state_dict[checkpoint_key] |
|
|
|
state_dict = { |
|
k.replace("module.", ""): v |
|
for k, v in state_dict.items() |
|
} |
|
|
|
state_dict = { |
|
k.replace("backbone.", ""): v |
|
for k, v in state_dict.items() |
|
} |
|
msg = model.load_state_dict(state_dict, strict=False) |
|
print('Pretrained weights found at {} and loaded with msg: {}'.format( |
|
pretrained_weights, msg)) |
|
else: |
|
print( |
|
"Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate." |
|
) |
|
url = None |
|
if model_name == "vit_small" and patch_size == 16: |
|
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth" |
|
elif model_name == "vit_small" and patch_size == 8: |
|
url = "dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth" |
|
elif model_name == "vit_base" and patch_size == 16: |
|
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth" |
|
elif model_name == "vit_base" and patch_size == 8: |
|
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth" |
|
elif model_name == "xcit_small_12_p16": |
|
url = "dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth" |
|
elif model_name == "xcit_small_12_p8": |
|
url = "dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth" |
|
elif model_name == "xcit_medium_24_p16": |
|
url = "dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth" |
|
elif model_name == "xcit_medium_24_p8": |
|
url = "dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth" |
|
elif model_name == "resnet50": |
|
url = "dino_resnet50_pretrain/dino_resnet50_pretrain.pth" |
|
if url is not None: |
|
print( |
|
"Since no pretrained weights have been provided, we load the reference pretrained DINO weights." |
|
) |
|
state_dict = torch.hub.load_state_dict_from_url( |
|
url="https://dl.fbaipublicfiles.com/dino/" + url) |
|
model.load_state_dict(state_dict, strict=True) |
|
else: |
|
print( |
|
"There is no reference weights available for this model => We use random weights." |
|
) |
|
|
|
|
|
def load_pretrained_linear_weights(linear_classifier, model_name, patch_size): |
|
url = None |
|
if model_name == "vit_small" and patch_size == 16: |
|
url = "dino_deitsmall16_pretrain/dino_deitsmall16_linearweights.pth" |
|
elif model_name == "vit_small" and patch_size == 8: |
|
url = "dino_deitsmall8_pretrain/dino_deitsmall8_linearweights.pth" |
|
elif model_name == "vit_base" and patch_size == 16: |
|
url = "dino_vitbase16_pretrain/dino_vitbase16_linearweights.pth" |
|
elif model_name == "vit_base" and patch_size == 8: |
|
url = "dino_vitbase8_pretrain/dino_vitbase8_linearweights.pth" |
|
elif model_name == "resnet50": |
|
url = "dino_resnet50_pretrain/dino_resnet50_linearweights.pth" |
|
if url is not None: |
|
print("We load the reference pretrained linear weights.") |
|
state_dict = torch.hub.load_state_dict_from_url( |
|
url="https://dl.fbaipublicfiles.com/dino/" + url)["state_dict"] |
|
linear_classifier.load_state_dict(state_dict, strict=True) |
|
else: |
|
print("We use random linear weights.") |
|
|
|
|
|
def clip_gradients(model, clip): |
|
norms = [] |
|
for name, p in model.named_parameters(): |
|
if p.grad is not None: |
|
param_norm = p.grad.data.norm(2) |
|
norms.append(param_norm.item()) |
|
clip_coef = clip / (param_norm + 1e-6) |
|
if clip_coef < 1: |
|
p.grad.data.mul_(clip_coef) |
|
return norms |
|
|
|
|
|
def cancel_gradients_last_layer(epoch, model, freeze_last_layer): |
|
if epoch >= freeze_last_layer: |
|
return |
|
for n, p in model.named_parameters(): |
|
if "last_layer" in n: |
|
p.grad = None |
|
|
|
|
|
def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs): |
|
""" |
|
Re-start from checkpoint |
|
""" |
|
if not os.path.isfile(ckp_path): |
|
return |
|
print("Found checkpoint at {}".format(ckp_path)) |
|
|
|
|
|
checkpoint = torch.load(ckp_path, map_location="cpu") |
|
|
|
|
|
|
|
|
|
for key, value in kwargs.items(): |
|
if key in checkpoint and value is not None: |
|
try: |
|
msg = value.load_state_dict(checkpoint[key], strict=False) |
|
print("=> loaded '{}' from checkpoint '{}' with msg {}".format( |
|
key, ckp_path, msg)) |
|
except TypeError: |
|
try: |
|
msg = value.load_state_dict(checkpoint[key]) |
|
print("=> loaded '{}' from checkpoint: '{}'".format( |
|
key, ckp_path)) |
|
except ValueError: |
|
print( |
|
"=> failed to load '{}' from checkpoint: '{}'".format( |
|
key, ckp_path)) |
|
else: |
|
print("=> key '{}' not found in checkpoint: '{}'".format( |
|
key, ckp_path)) |
|
|
|
|
|
if run_variables is not None: |
|
for var_name in run_variables: |
|
if var_name in checkpoint: |
|
run_variables[var_name] = checkpoint[var_name] |
|
|
|
|
|
def cosine_scheduler(base_value, |
|
final_value, |
|
epochs, |
|
niter_per_ep, |
|
warmup_epochs=0, |
|
start_warmup_value=0): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, |
|
warmup_iters) |
|
|
|
iters = np.arange(epochs * niter_per_ep - warmup_iters) |
|
schedule = final_value + 0.5 * (base_value - final_value) * ( |
|
1 + np.cos(np.pi * iters / len(iters))) |
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def bool_flag(s): |
|
""" |
|
Parse boolean arguments from the command line. |
|
""" |
|
FALSY_STRINGS = {"off", "false", "0"} |
|
TRUTHY_STRINGS = {"on", "true", "1"} |
|
if s.lower() in FALSY_STRINGS: |
|
return False |
|
elif s.lower() in TRUTHY_STRINGS: |
|
return True |
|
else: |
|
raise argparse.ArgumentTypeError("invalid value for a boolean flag") |
|
|
|
|
|
def fix_random_seeds(seed=31): |
|
""" |
|
Fix random seeds. |
|
""" |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.6f} ({global_avg:.6f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], |
|
dtype=torch.float64, |
|
device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format(median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
def reduce_dict(input_dict, average=True): |
|
""" |
|
Args: |
|
input_dict (dict): all the values will be reduced |
|
average (bool): whether to do average or sum |
|
Reduce the values in the dictionary from all processes so that all processes |
|
have the averaged results. Returns a dict with the same fields as |
|
input_dict, after reduction. |
|
""" |
|
world_size = get_world_size() |
|
if world_size < 2: |
|
return input_dict |
|
with torch.no_grad(): |
|
names = [] |
|
values = [] |
|
|
|
for k in sorted(input_dict.keys()): |
|
names.append(k) |
|
values.append(input_dict[k]) |
|
values = torch.stack(values, dim=0) |
|
dist.all_reduce(values) |
|
if average: |
|
values /= world_size |
|
reduced_dict = {k: v for k, v in zip(names, values)} |
|
return reduced_dict |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append("{}: {}".format(name, str(meter))) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.6f}') |
|
data_time = SmoothedValue(fmt='{avg:.6f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
if torch.cuda.is_available(): |
|
log_msg = self.delimiter.join([ |
|
header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', |
|
'time: {time}', 'data: {data}', 'max mem: {memory:.0f}' |
|
]) |
|
else: |
|
log_msg = self.delimiter.join([ |
|
header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', |
|
'time: {time}', 'data: {data}' |
|
]) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print( |
|
log_msg.format( |
|
i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print( |
|
log_msg.format(i, |
|
len(iterable), |
|
eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), |
|
data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.6f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
def get_sha(): |
|
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def _run(command): |
|
return subprocess.check_output(command, |
|
cwd=cwd).decode('ascii').strip() |
|
|
|
sha = 'N/A' |
|
diff = "clean" |
|
branch = 'N/A' |
|
try: |
|
sha = _run(['git', 'rev-parse', 'HEAD']) |
|
subprocess.check_output(['git', 'diff'], cwd=cwd) |
|
diff = _run(['git', 'diff-index', 'HEAD']) |
|
diff = "has uncommited changes" if diff else "clean" |
|
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) |
|
except Exception: |
|
pass |
|
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
return message |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def init_distributed_mode(args): |
|
|
|
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
args.rank = int(os.environ["RANK"]) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
|
|
elif 'SLURM_PROCID' in os.environ: |
|
args.rank = int(os.environ['SLURM_PROCID']) |
|
args.gpu = args.rank % torch.cuda.device_count() |
|
|
|
|
|
elif torch.cuda.is_available(): |
|
print('Will run the code on one GPU.') |
|
args.rank, args.gpu, args.world_size = 0, 0, 1 |
|
os.environ['MASTER_ADDR'] = '127.0.0.1' |
|
os.environ['MASTER_PORT'] = '29500' |
|
else: |
|
print('Does not support training without GPU.') |
|
sys.exit(1) |
|
|
|
dist.init_process_group( |
|
backend="nccl", |
|
init_method=args.dist_url, |
|
world_size=args.world_size, |
|
rank=args.rank, |
|
) |
|
|
|
torch.cuda.set_device(args.gpu) |
|
print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), |
|
flush=True) |
|
dist.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
def accuracy(output, target, topk=(1, )): |
|
"""Computes the accuracy over the k top predictions for the specified values of k""" |
|
maxk = max(topk) |
|
batch_size = target.size(0) |
|
_, pred = output.topk(maxk, 1, True, True) |
|
pred = pred.t() |
|
correct = pred.eq(target.reshape(1, -1).expand_as(pred)) |
|
return [ |
|
correct[:k].reshape(-1).float().sum(0) * 100. / batch_size |
|
for k in topk |
|
] |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
class LARS(torch.optim.Optimizer): |
|
""" |
|
Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py |
|
""" |
|
def __init__(self, |
|
params, |
|
lr=0, |
|
weight_decay=0, |
|
momentum=0.9, |
|
eta=0.001, |
|
weight_decay_filter=None, |
|
lars_adaptation_filter=None): |
|
defaults = dict(lr=lr, |
|
weight_decay=weight_decay, |
|
momentum=momentum, |
|
eta=eta, |
|
weight_decay_filter=weight_decay_filter, |
|
lars_adaptation_filter=lars_adaptation_filter) |
|
super().__init__(params, defaults) |
|
|
|
@torch.no_grad() |
|
def step(self): |
|
for g in self.param_groups: |
|
for p in g['params']: |
|
dp = p.grad |
|
|
|
if dp is None: |
|
continue |
|
|
|
if p.ndim != 1: |
|
dp = dp.add(p, alpha=g['weight_decay']) |
|
|
|
if p.ndim != 1: |
|
param_norm = torch.norm(p) |
|
update_norm = torch.norm(dp) |
|
one = torch.ones_like(param_norm) |
|
q = torch.where( |
|
param_norm > 0., |
|
torch.where(update_norm > 0, |
|
(g['eta'] * param_norm / update_norm), |
|
one), one) |
|
dp = dp.mul(q) |
|
|
|
param_state = self.state[p] |
|
if 'mu' not in param_state: |
|
param_state['mu'] = torch.zeros_like(p) |
|
mu = param_state['mu'] |
|
mu.mul_(g['momentum']).add_(dp) |
|
|
|
p.add_(mu, alpha=-g['lr']) |
|
|
|
|
|
class MultiCropWrapper(nn.Module): |
|
""" |
|
Perform forward pass separately on each resolution input. |
|
The inputs corresponding to a single resolution are clubbed and single |
|
forward is run on the same resolution inputs. Hence we do several |
|
forward passes = number of different resolutions used. We then |
|
concatenate all the output features and run the head forward on these |
|
concatenated features. |
|
""" |
|
def __init__(self, backbone, head): |
|
super(MultiCropWrapper, self).__init__() |
|
|
|
backbone.fc, backbone.head = nn.Identity(), nn.Identity() |
|
self.backbone = backbone |
|
self.head = head |
|
|
|
def forward(self, x): |
|
|
|
if not isinstance(x, list): |
|
x = [x] |
|
idx_crops = torch.cumsum( |
|
torch.unique_consecutive( |
|
torch.tensor([inp.shape[-1] for inp in x]), |
|
return_counts=True, |
|
)[1], 0) |
|
start_idx, output = 0, torch.empty(0).to(x[0].device) |
|
for end_idx in idx_crops: |
|
_out = self.backbone(torch.cat(x[start_idx:end_idx])) |
|
|
|
|
|
if isinstance(_out, tuple): |
|
_out = _out[0] |
|
|
|
output = torch.cat((output, _out)) |
|
start_idx = end_idx |
|
|
|
return self.head(output) |
|
|
|
|
|
def get_params_groups(model): |
|
regularized = [] |
|
not_regularized = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
|
|
if name.endswith(".bias") or len(param.shape) == 1: |
|
not_regularized.append(param) |
|
else: |
|
regularized.append(param) |
|
return [{ |
|
'params': regularized |
|
}, { |
|
'params': not_regularized, |
|
'weight_decay': 0. |
|
}] |
|
|
|
|
|
def has_batchnorms(model): |
|
bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, |
|
nn.SyncBatchNorm) |
|
for name, module in model.named_modules(): |
|
if isinstance(module, bn_types): |
|
return True |
|
return False |
|
|
|
|
|
class PCA(): |
|
""" |
|
Class to compute and apply PCA. |
|
""" |
|
def __init__(self, dim=256, whit=0.5): |
|
self.dim = dim |
|
self.whit = whit |
|
self.mean = None |
|
|
|
def train_pca(self, cov): |
|
""" |
|
Takes a covariance matrix (np.ndarray) as input. |
|
""" |
|
d, v = np.linalg.eigh(cov) |
|
eps = d.max() * 1e-5 |
|
n_0 = (d < eps).sum() |
|
if n_0 > 0: |
|
d[d < eps] = eps |
|
|
|
|
|
totenergy = d.sum() |
|
|
|
|
|
idx = np.argsort(d)[::-1][:self.dim] |
|
d = d[idx] |
|
v = v[:, idx] |
|
|
|
print("keeping %.2f %% of the energy" % (d.sum() / totenergy * 100.0)) |
|
|
|
|
|
d = np.diag(1. / d**self.whit) |
|
|
|
|
|
self.dvt = np.dot(d, v.T) |
|
|
|
def apply(self, x): |
|
|
|
if isinstance(x, np.ndarray): |
|
if self.mean is not None: |
|
x -= self.mean |
|
return np.dot(self.dvt, x.T).T |
|
|
|
|
|
if x.is_cuda: |
|
if self.mean is not None: |
|
x -= torch.cuda.FloatTensor(self.mean) |
|
return torch.mm(torch.cuda.FloatTensor(self.dvt), |
|
x.transpose(0, 1)).transpose(0, 1) |
|
|
|
|
|
if self.mean is not None: |
|
x -= torch.FloatTensor(self.mean) |
|
return torch.mm(torch.FloatTensor(self.dvt), |
|
x.transpose(0, 1)).transpose(0, 1) |
|
|
|
|
|
def compute_ap(ranks, nres): |
|
""" |
|
Computes average precision for given ranked indexes. |
|
Arguments |
|
--------- |
|
ranks : zerro-based ranks of positive images |
|
nres : number of positive images |
|
Returns |
|
------- |
|
ap : average precision |
|
""" |
|
|
|
|
|
nimgranks = len(ranks) |
|
|
|
|
|
ap = 0 |
|
|
|
recall_step = 1. / nres |
|
|
|
for j in np.arange(nimgranks): |
|
rank = ranks[j] |
|
|
|
if rank == 0: |
|
precision_0 = 1. |
|
else: |
|
precision_0 = float(j) / rank |
|
|
|
precision_1 = float(j + 1) / (rank + 1) |
|
|
|
ap += (precision_0 + precision_1) * recall_step / 2. |
|
|
|
return ap |
|
|
|
|
|
def compute_map(ranks, gnd, kappas=[]): |
|
""" |
|
Computes the mAP for a given set of returned results. |
|
Usage: |
|
map = compute_map (ranks, gnd) |
|
computes mean average precsion (map) only |
|
map, aps, pr, prs = compute_map (ranks, gnd, kappas) |
|
computes mean average precision (map), average precision (aps) for each query |
|
computes mean precision at kappas (pr), precision at kappas (prs) for each query |
|
Notes: |
|
1) ranks starts from 0, ranks.shape = db_size X #queries |
|
2) The junk results (e.g., the query itself) should be declared in the gnd stuct array |
|
3) If there are no positive images for some query, that query is excluded from the evaluation |
|
""" |
|
|
|
map = 0. |
|
nq = len(gnd) |
|
aps = np.zeros(nq) |
|
pr = np.zeros(len(kappas)) |
|
prs = np.zeros((nq, len(kappas))) |
|
nempty = 0 |
|
|
|
for i in np.arange(nq): |
|
qgnd = np.array(gnd[i]['ok']) |
|
|
|
|
|
if qgnd.shape[0] == 0: |
|
aps[i] = float('nan') |
|
prs[i, :] = float('nan') |
|
nempty += 1 |
|
continue |
|
|
|
try: |
|
qgndj = np.array(gnd[i]['junk']) |
|
except: |
|
qgndj = np.empty(0) |
|
|
|
|
|
pos = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgnd)] |
|
junk = np.arange(ranks.shape[0])[np.in1d(ranks[:, i], qgndj)] |
|
|
|
k = 0 |
|
ij = 0 |
|
if len(junk): |
|
|
|
|
|
ip = 0 |
|
while (ip < len(pos)): |
|
while (ij < len(junk) and pos[ip] > junk[ij]): |
|
k += 1 |
|
ij += 1 |
|
pos[ip] = pos[ip] - k |
|
ip += 1 |
|
|
|
|
|
ap = compute_ap(pos, len(qgnd)) |
|
map = map + ap |
|
aps[i] = ap |
|
|
|
|
|
pos += 1 |
|
for j in np.arange(len(kappas)): |
|
kq = min(max(pos), kappas[j]) |
|
prs[i, j] = (pos <= kq).sum() / kq |
|
pr = pr + prs[i, :] |
|
|
|
map = map / (nq - nempty) |
|
pr = pr / (nq - nempty) |
|
|
|
return map, aps, pr, prs |
|
|
|
|
|
def multi_scale(samples, model): |
|
v = None |
|
for s in [1, 1 / 2**(1 / 2), 1 / 2]: |
|
if s == 1: |
|
inp = samples.clone() |
|
else: |
|
inp = nn.functional.interpolate(samples, |
|
scale_factor=s, |
|
mode='bilinear', |
|
align_corners=False) |
|
feats = model(inp).clone() |
|
if v is None: |
|
v = feats |
|
else: |
|
v += feats |
|
v /= 3 |
|
v /= v.norm() |
|
return v |