|
""" |
|
Logger copied from OpenAI baselines to avoid extra RL-based dependencies: |
|
https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py |
|
""" |
|
|
|
import os |
|
import sys |
|
import shutil |
|
import os.path as osp |
|
import json |
|
import time |
|
import datetime |
|
import tempfile |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import contextmanager |
|
|
|
DEBUG = 10 |
|
INFO = 20 |
|
WARN = 30 |
|
ERROR = 40 |
|
|
|
DISABLED = 50 |
|
|
|
|
|
class KVWriter(object): |
|
def writekvs(self, kvs): |
|
raise NotImplementedError |
|
|
|
|
|
class SeqWriter(object): |
|
def writeseq(self, seq): |
|
raise NotImplementedError |
|
|
|
|
|
class HumanOutputFormat(KVWriter, SeqWriter): |
|
def __init__(self, filename_or_file): |
|
if isinstance(filename_or_file, str): |
|
self.file = open(filename_or_file, "wt") |
|
self.own_file = True |
|
else: |
|
assert hasattr(filename_or_file, "read"), ( |
|
"expected file or str, got %s" % filename_or_file |
|
) |
|
self.file = filename_or_file |
|
self.own_file = False |
|
|
|
def writekvs(self, kvs): |
|
|
|
key2str = {} |
|
for (key, val) in sorted(kvs.items()): |
|
if hasattr(val, "__float__"): |
|
valstr = "%-8.3g" % val |
|
else: |
|
valstr = str(val) |
|
key2str[self._truncate(key)] = self._truncate(valstr) |
|
|
|
|
|
if len(key2str) == 0: |
|
print("WARNING: tried to write empty key-value dict") |
|
return |
|
else: |
|
keywidth = max(map(len, key2str.keys())) |
|
valwidth = max(map(len, key2str.values())) |
|
|
|
|
|
dashes = "-" * (keywidth + valwidth + 7) |
|
lines = [dashes] |
|
for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()): |
|
lines.append( |
|
"| %s%s | %s%s |" |
|
% (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val))) |
|
) |
|
lines.append(dashes) |
|
self.file.write("\n".join(lines) + "\n") |
|
|
|
|
|
self.file.flush() |
|
|
|
def _truncate(self, s): |
|
maxlen = 30 |
|
return s[: maxlen - 3] + "..." if len(s) > maxlen else s |
|
|
|
def writeseq(self, seq): |
|
seq = list(seq) |
|
for (i, elem) in enumerate(seq): |
|
self.file.write(elem) |
|
if i < len(seq) - 1: |
|
self.file.write(" ") |
|
self.file.write("\n") |
|
self.file.flush() |
|
|
|
def close(self): |
|
if self.own_file: |
|
self.file.close() |
|
|
|
|
|
class JSONOutputFormat(KVWriter): |
|
def __init__(self, filename): |
|
self.file = open(filename, "wt") |
|
|
|
def writekvs(self, kvs): |
|
for k, v in sorted(kvs.items()): |
|
if hasattr(v, "dtype"): |
|
kvs[k] = float(v) |
|
self.file.write(json.dumps(kvs) + "\n") |
|
self.file.flush() |
|
|
|
def close(self): |
|
self.file.close() |
|
|
|
|
|
class CSVOutputFormat(KVWriter): |
|
def __init__(self, filename): |
|
self.file = open(filename, "w+t") |
|
self.keys = [] |
|
self.sep = "," |
|
|
|
def writekvs(self, kvs): |
|
|
|
extra_keys = list(kvs.keys() - self.keys) |
|
extra_keys.sort() |
|
if extra_keys: |
|
self.keys.extend(extra_keys) |
|
self.file.seek(0) |
|
lines = self.file.readlines() |
|
self.file.seek(0) |
|
for (i, k) in enumerate(self.keys): |
|
if i > 0: |
|
self.file.write(",") |
|
self.file.write(k) |
|
self.file.write("\n") |
|
for line in lines[1:]: |
|
self.file.write(line[:-1]) |
|
self.file.write(self.sep * len(extra_keys)) |
|
self.file.write("\n") |
|
for (i, k) in enumerate(self.keys): |
|
if i > 0: |
|
self.file.write(",") |
|
v = kvs.get(k) |
|
if v is not None: |
|
self.file.write(str(v)) |
|
self.file.write("\n") |
|
self.file.flush() |
|
|
|
def close(self): |
|
self.file.close() |
|
|
|
|
|
class TensorBoardOutputFormat(KVWriter): |
|
""" |
|
Dumps key/value pairs into TensorBoard's numeric format. |
|
""" |
|
|
|
def __init__(self, dir): |
|
os.makedirs(dir, exist_ok=True) |
|
self.dir = dir |
|
self.step = 1 |
|
prefix = "events" |
|
path = osp.join(osp.abspath(dir), prefix) |
|
import tensorflow as tf |
|
from tensorflow.python import pywrap_tensorflow |
|
from tensorflow.core.util import event_pb2 |
|
from tensorflow.python.util import compat |
|
|
|
self.tf = tf |
|
self.event_pb2 = event_pb2 |
|
self.pywrap_tensorflow = pywrap_tensorflow |
|
self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) |
|
|
|
def writekvs(self, kvs): |
|
def summary_val(k, v): |
|
kwargs = {"tag": k, "simple_value": float(v)} |
|
return self.tf.Summary.Value(**kwargs) |
|
|
|
summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) |
|
event = self.event_pb2.Event(wall_time=time.time(), summary=summary) |
|
event.step = ( |
|
self.step |
|
) |
|
self.writer.WriteEvent(event) |
|
self.writer.Flush() |
|
self.step += 1 |
|
|
|
def close(self): |
|
if self.writer: |
|
self.writer.Close() |
|
self.writer = None |
|
|
|
|
|
def make_output_format(format, ev_dir, log_suffix=""): |
|
os.makedirs(ev_dir, exist_ok=True) |
|
if format == "stdout": |
|
return HumanOutputFormat(sys.stdout) |
|
elif format == "log": |
|
return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix)) |
|
elif format == "json": |
|
return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix)) |
|
elif format == "csv": |
|
return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix)) |
|
elif format == "tensorboard": |
|
return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix)) |
|
else: |
|
raise ValueError("Unknown format specified: %s" % (format,)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def logkv(key, val): |
|
""" |
|
Log a value of some diagnostic |
|
Call this once for each diagnostic quantity, each iteration |
|
If called many times, last value will be used. |
|
""" |
|
get_current().logkv(key, val) |
|
|
|
|
|
def logkv_mean(key, val): |
|
""" |
|
The same as logkv(), but if called many times, values averaged. |
|
""" |
|
get_current().logkv_mean(key, val) |
|
|
|
|
|
def logkvs(d): |
|
""" |
|
Log a dictionary of key-value pairs |
|
""" |
|
for (k, v) in d.items(): |
|
logkv(k, v) |
|
|
|
|
|
def dumpkvs(): |
|
""" |
|
Write all of the diagnostics from the current iteration |
|
""" |
|
return get_current().dumpkvs() |
|
|
|
|
|
def getkvs(): |
|
return get_current().name2val |
|
|
|
|
|
def log(*args, level=INFO): |
|
""" |
|
Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). |
|
""" |
|
get_current().log(*args, level=level) |
|
|
|
|
|
def debug(*args): |
|
log(*args, level=DEBUG) |
|
|
|
|
|
def info(*args): |
|
log(*args, level=INFO) |
|
|
|
|
|
def warn(*args): |
|
log(*args, level=WARN) |
|
|
|
|
|
def error(*args): |
|
log(*args, level=ERROR) |
|
|
|
|
|
def set_level(level): |
|
""" |
|
Set logging threshold on current logger. |
|
""" |
|
get_current().set_level(level) |
|
|
|
|
|
def set_comm(comm): |
|
get_current().set_comm(comm) |
|
|
|
|
|
def get_dir(): |
|
""" |
|
Get directory that log files are being written to. |
|
will be None if there is no output directory (i.e., if you didn't call start) |
|
""" |
|
return get_current().get_dir() |
|
|
|
def get_tensorboard_writer(): |
|
"""get the tensorboard writer |
|
""" |
|
pass |
|
|
|
|
|
record_tabular = logkv |
|
dump_tabular = dumpkvs |
|
|
|
|
|
@contextmanager |
|
def profile_kv(scopename): |
|
logkey = "wait_" + scopename |
|
tstart = time.time() |
|
try: |
|
yield |
|
finally: |
|
get_current().name2val[logkey] += time.time() - tstart |
|
|
|
|
|
def profile(n): |
|
""" |
|
Usage: |
|
@profile("my_func") |
|
def my_func(): code |
|
""" |
|
|
|
def decorator_with_name(func): |
|
def func_wrapper(*args, **kwargs): |
|
with profile_kv(n): |
|
return func(*args, **kwargs) |
|
|
|
return func_wrapper |
|
|
|
return decorator_with_name |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_current(): |
|
if Logger.CURRENT is None: |
|
_configure_default_logger() |
|
|
|
return Logger.CURRENT |
|
|
|
|
|
class Logger(object): |
|
DEFAULT = None |
|
|
|
CURRENT = None |
|
|
|
def __init__(self, dir, output_formats, comm=None): |
|
self.name2val = defaultdict(float) |
|
self.name2cnt = defaultdict(int) |
|
self.level = INFO |
|
self.dir = dir |
|
self.output_formats = output_formats |
|
self.comm = comm |
|
|
|
|
|
|
|
def logkv(self, key, val): |
|
self.name2val[key] = val |
|
|
|
def logkv_mean(self, key, val): |
|
oldval, cnt = self.name2val[key], self.name2cnt[key] |
|
self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) |
|
self.name2cnt[key] = cnt + 1 |
|
|
|
def dumpkvs(self): |
|
if self.comm is None: |
|
d = self.name2val |
|
else: |
|
d = mpi_weighted_mean( |
|
self.comm, |
|
{ |
|
name: (val, self.name2cnt.get(name, 1)) |
|
for (name, val) in self.name2val.items() |
|
}, |
|
) |
|
if self.comm.rank != 0: |
|
d["dummy"] = 1 |
|
out = d.copy() |
|
for fmt in self.output_formats: |
|
if isinstance(fmt, KVWriter): |
|
fmt.writekvs(d) |
|
self.name2val.clear() |
|
self.name2cnt.clear() |
|
return out |
|
|
|
def log(self, *args, level=INFO): |
|
if self.level <= level: |
|
self._do_log(args) |
|
|
|
|
|
|
|
def set_level(self, level): |
|
self.level = level |
|
|
|
def set_comm(self, comm): |
|
self.comm = comm |
|
|
|
def get_dir(self): |
|
return self.dir |
|
|
|
def close(self): |
|
for fmt in self.output_formats: |
|
fmt.close() |
|
|
|
|
|
|
|
def _do_log(self, args): |
|
for fmt in self.output_formats: |
|
if isinstance(fmt, SeqWriter): |
|
fmt.writeseq(map(str, args)) |
|
|
|
|
|
def get_rank_without_mpi_import(): |
|
|
|
|
|
for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]: |
|
if varname in os.environ: |
|
return int(os.environ[varname]) |
|
return 0 |
|
|
|
|
|
def mpi_weighted_mean(comm, local_name2valcount): |
|
""" |
|
Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110 |
|
Perform a weighted average over dicts that are each on a different node |
|
Input: local_name2valcount: dict mapping key -> (value, count) |
|
Returns: key -> mean |
|
""" |
|
all_name2valcount = comm.gather(local_name2valcount) |
|
if comm.rank == 0: |
|
name2sum = defaultdict(float) |
|
name2count = defaultdict(float) |
|
for n2vc in all_name2valcount: |
|
for (name, (val, count)) in n2vc.items(): |
|
try: |
|
val = float(val) |
|
except ValueError: |
|
if comm.rank == 0: |
|
warnings.warn( |
|
"WARNING: tried to compute mean on non-float {}={}".format( |
|
name, val |
|
) |
|
) |
|
else: |
|
name2sum[name] += val * count |
|
name2count[name] += count |
|
return {name: name2sum[name] / name2count[name] for name in name2sum} |
|
else: |
|
return {} |
|
|
|
|
|
def configure(dir=None, format_strs=None, comm=None, log_suffix=""): |
|
""" |
|
If comm is provided, average all numerical stats across that comm |
|
""" |
|
if dir is None: |
|
dir = os.getenv("OPENAI_LOGDIR") |
|
if dir is None: |
|
dir = osp.join( |
|
tempfile.gettempdir(), |
|
datetime.datetime.now().strftime("openai-%Y-%m-%d-%H-%M-%S-%f"), |
|
) |
|
assert isinstance(dir, str) |
|
dir = os.path.expanduser(dir) |
|
os.makedirs(os.path.expanduser(dir), exist_ok=True) |
|
|
|
rank = get_rank_without_mpi_import() |
|
if rank > 0: |
|
log_suffix = log_suffix + "-rank%03i" % rank |
|
|
|
if format_strs is None: |
|
if rank == 0: |
|
format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",") |
|
else: |
|
format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",") |
|
format_strs = filter(None, format_strs) |
|
output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] |
|
|
|
Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) |
|
if output_formats: |
|
log("Logging to %s" % dir) |
|
|
|
|
|
def _configure_default_logger(): |
|
configure() |
|
Logger.DEFAULT = Logger.CURRENT |
|
|
|
|
|
def reset(): |
|
if Logger.CURRENT is not Logger.DEFAULT: |
|
Logger.CURRENT.close() |
|
Logger.CURRENT = Logger.DEFAULT |
|
log("Reset logger") |
|
|
|
|
|
@contextmanager |
|
def scoped_configure(dir=None, format_strs=None, comm=None): |
|
prevlogger = Logger.CURRENT |
|
configure(dir=dir, format_strs=format_strs, comm=comm) |
|
try: |
|
yield |
|
finally: |
|
Logger.CURRENT.close() |
|
Logger.CURRENT = prevlogger |
|
|
|
|