LN3Diff / guided_diffusion /dist_util.py
NIRVANALAN
release file
87c126b
raw
history blame
4.87 kB
"""
Helpers for distributed training.
"""
import datetime
import io
import os
import socket
import blobfile as bf
from pdb import set_trace as st
# from mpi4py import MPI
import torch as th
import torch.distributed as dist
# Change this to reflect your cluster layout.
# The GPU for a given rank is (rank % GPUS_PER_NODE).
GPUS_PER_NODE = 8
SETUP_RETRY_COUNT = 3
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def synchronize():
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def setup_dist(args):
"""
Setup a distributed process group.
"""
if dist.is_initialized():
return
# print(f"{os.environ['MASTER_ADDR']=} {args.master_port=}")
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count(), timeout=datetime.timedelta(seconds=5400))
# st() no mark
dist.init_process_group(backend='nccl', init_method='env://', timeout=datetime.timedelta(seconds=54000))
print(f"{args.local_rank=} init complete")
# synchronize() # extra memory on rank 0, why?
th.cuda.empty_cache()
def cleanup():
dist.destroy_process_group()
def dev():
"""
Get the device to use for torch.distributed.
"""
if th.cuda.is_available():
if get_world_size() > 1:
return th.device(f"cuda:{get_rank() % GPUS_PER_NODE}")
return th.device(f"cuda")
return th.device("cpu")
# def load_state_dict(path, submodule_name='', **kwargs):
def load_state_dict(path, **kwargs):
"""
Load a PyTorch file without redundant fetches across MPI ranks.
"""
# chunk_size = 2 ** 30 # MPI has a relatively small size limit
# if get_rank() == 0:
# with bf.BlobFile(path, "rb") as f:
# data = f.read()
# num_chunks = len(data) // chunk_size
# if len(data) % chunk_size:
# num_chunks += 1
# MPI.COMM_WORLD.bcast(num_chunks)
# for i in range(0, len(data), chunk_size):
# MPI.COMM_WORLD.bcast(data[i : i + chunk_size])
# else:
# num_chunks = MPI.COMM_WORLD.bcast(None)
# data = bytes()
# for _ in range(num_chunks):
# data += MPI.COMM_WORLD.bcast(None)
# return th.load(io.BytesIO(data), **kwargs)
# with open(path) as f:
ckpt = th.load(path, **kwargs)
# if submodule_name != '':
# assert submodule_name in ckpt
# return ckpt[submodule_name]
# else:
return ckpt
def sync_params(params):
"""
Synchronize a sequence of Tensors across ranks from rank 0.
"""
# for k, p in params:
for p in params:
with th.no_grad():
try:
dist.broadcast(p, 0)
except Exception as e:
print(k, e)
# print(e)
def _find_free_port():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("", 0))
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
return s.getsockname()[1]
finally:
s.close()
_num_moments = 3 # [num_scalars, sum_of_scalars, sum_of_squares]
_reduce_dtype = th.float32 # Data type to use for initial per-tensor reduction.
_counter_dtype = th.float64 # Data type to use for the internal counters.
_rank = 0 # Rank of the current process.
_sync_device = None # Device to use for multiprocess communication. None = single-process.
_sync_called = False # Has _sync() been called yet?
_counters = dict() # Running counters on each device, updated by report(): name => device => torch.Tensor
_cumulative = dict() # Cumulative counters on the CPU, updated by _sync(): name => torch.Tensor
def init_multiprocessing(rank, sync_device):
r"""Initializes `utils.torch_utils.training_stats` for collecting statistics
across multiple processes.
This function must be called after
`torch.distributed.init_process_group()` and before `Collector.update()`.
The call is not necessary if multi-process collection is not needed.
Args:
rank: Rank of the current process.
sync_device: PyTorch device to use for inter-process
communication, or None to disable multi-process
collection. Typically `torch.device('cuda', rank)`.
"""
global _rank, _sync_device
assert not _sync_called
_rank = rank
_sync_device = sync_device