File size: 12,607 Bytes
87c126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
"""
Train a diffusion model on images.
"""
import random
import json
import sys
import os
sys.path.append('.')
import torch.distributed as dist
import traceback
import torch as th
import torch.multiprocessing as mp
import numpy as np
import argparse
import dnnlib
from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
args_to_dict,
add_dict_to_argparser,
)
# from nsr.train_util import TrainLoop3DRec as TrainLoop
from nsr.train_nv_util import TrainLoop3DRecNV, TrainLoop3DRec, TrainLoop3DRecNVPatch, TrainLoop3DRecNVPatchSingleForward, TrainLoop3DRecNVPatchSingleForwardMV, TrainLoop3DRecNVPatchSingleForwardMVAdvLoss
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default, dataset_defaults
from nsr.losses.builder import E3DGELossClass, E3DGE_with_AdvLoss
from pdb import set_trace as st
# th.backends.cuda.matmul.allow_tf32 = True # https://huggingface.co/docs/diffusers/optimization/fp16
# th.backends.cuda.matmul.allow_tf32 = True
# th.backends.cudnn.allow_tf32 = True
# th.backends.cudnn.enabled = True
enable_tf32 = th.backends.cuda.matmul.allow_tf32 # requires A100
th.backends.cuda.matmul.allow_tf32 = enable_tf32
th.backends.cudnn.allow_tf32 = enable_tf32
th.backends.cudnn.enabled = True
def training_loop(args):
# def training_loop(args):
dist_util.setup_dist(args)
# th.autograd.set_detect_anomaly(True) # type: ignore
th.autograd.set_detect_anomaly(False) # type: ignore
# https://blog.csdn.net/qq_41682740/article/details/126304613
SEED = args.seed
# dist.init_process_group(backend='nccl', init_method='env://', rank=args.local_rank, world_size=th.cuda.device_count())
logger.log(f"{args.local_rank=} init complete, seed={SEED}")
th.cuda.set_device(args.local_rank)
th.cuda.empty_cache()
# * deterministic algorithms flags
th.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
random.seed(SEED)
# logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"])
logger.configure(dir=args.logdir)
logger.log("creating encoder and NSR decoder...")
# device = dist_util.dev()
device = th.device("cuda", args.local_rank)
# shared eg3d opts
opts = eg3d_options_default()
if args.sr_training:
args.sr_kwargs = dnnlib.EasyDict(
channel_base=opts.cbase,
channel_max=opts.cmax,
fused_modconv_default='inference_only',
use_noise=True
) # ! close noise injection? since noise_mode='none' in eg3d
auto_encoder = create_3DAE_model(
**args_to_dict(args,
encoder_and_nsr_defaults().keys()))
auto_encoder.to(device)
auto_encoder.train()
logger.log("creating data loader...")
# data = load_data(
# st()
if args.objv_dataset:
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
else: # shapenet
from datasets.shapenet import load_data, load_eval_data, load_memory_data
if args.overfitting:
data = load_memory_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
# load_depth=args.depth_lambda > 0
# load_depth=True, # for evaluation
**args_to_dict(args,
dataset_defaults().keys()))
eval_data = None
else:
if args.use_wds:
# st()
if args.data_dir == 'NONE':
with open(args.shards_lst) as f:
shards_lst = [url.strip() for url in f.readlines()]
data = load_wds_data(
shards_lst, # type: ignore
args.image_size,
args.image_size_encoder,
args.batch_size,
args.num_workers,
# plucker_embedding=args.plucker_embedding,
# mv_input=args.mv_input,
# split_chunk_input=args.split_chunk_input,
**args_to_dict(args,
dataset_defaults().keys()))
elif not args.inference:
data = load_wds_data(args.data_dir,
args.image_size,
args.image_size_encoder,
args.batch_size,
args.num_workers,
plucker_embedding=args.plucker_embedding,
mv_input=args.mv_input,
split_chunk_input=args.split_chunk_input)
else:
data = None
# ! load eval
if args.eval_data_dir == 'NONE':
with open(args.eval_shards_lst) as f:
eval_shards_lst = [url.strip() for url in f.readlines()]
else:
eval_shards_lst = args.eval_data_dir # auto expanded
eval_data = load_wds_data(
eval_shards_lst, # type: ignore
args.image_size,
args.image_size_encoder,
args.eval_batch_size,
args.num_workers,
# decode_encode_img_only=args.decode_encode_img_only,
# plucker_embedding=args.plucker_embedding,
# load_wds_diff=False,
# mv_input=args.mv_input,
# split_chunk_input=args.split_chunk_input,
**args_to_dict(args,
dataset_defaults().keys()))
# load_instance=True) # TODO
else:
if args.inference:
data = None
else:
data = load_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True,
preprocess=auto_encoder.preprocess, # clip
dataset_size=args.dataset_size,
trainer_name=args.trainer_name,
use_lmdb=args.use_lmdb,
use_wds=args.use_wds,
use_lmdb_compressed=args.use_lmdb_compressed,
plucker_embedding=args.plucker_embedding
# load_depth=True # for evaluation
)
if args.pose_warm_up_iter > 0:
overfitting_dataset = load_memory_data(
file_path=args.data_dir,
batch_size=args.batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
# load_depth=args.depth_lambda > 0
# load_depth=True # for evaluation
**args_to_dict(args,
dataset_defaults().keys()))
data = [data, overfitting_dataset, args.pose_warm_up_iter]
eval_data = load_eval_data(
file_path=args.eval_data_dir,
batch_size=args.eval_batch_size,
reso=args.image_size,
reso_encoder=args.image_size_encoder, # 224 -> 128
num_workers=args.num_workers,
load_depth=True, # for evaluation
preprocess=auto_encoder.preprocess,
# interval=args.interval,
# use_lmdb=args.use_lmdb,
# plucker_embedding=args.plucker_embedding,
# load_real=args.load_real,
# four_view_for_latent=args.four_view_for_latent,
# load_extra_36_view=args.load_extra_36_view,
# shuffle_across_cls=args.shuffle_across_cls,
**args_to_dict(args,
dataset_defaults().keys()))
logger.log("creating data loader done...")
args.img_size = [args.image_size_encoder]
# try dry run
# batch = next(data)
# batch = None
# logger.log("creating model and diffusion...")
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys()))
# opt.max_depth, opt.min_depth = args.rendering_kwargs.ray_end, args.rendering_kwargs.ray_start
if 'disc' in args.trainer_name:
loss_class = E3DGE_with_AdvLoss(
device,
opt,
# disc_weight=args.patchgan_disc, # rec_cvD_lambda
disc_factor=args.patchgan_disc_factor, # reduce D update speed
disc_weight=args.patchgan_disc_g_weight).to(device)
else:
loss_class = E3DGELossClass(device, opt).to(device)
# writer = SummaryWriter() # TODO, add log dir
logger.log("training...")
TrainLoop = {
'input_rec': TrainLoop3DRec,
'nv_rec': TrainLoop3DRecNV,
# 'nv_rec_patch': TrainLoop3DRecNVPatch,
'nv_rec_patch': TrainLoop3DRecNVPatchSingleForward,
'nv_rec_patch_mvE': TrainLoop3DRecNVPatchSingleForwardMV,
'nv_rec_patch_mvE_disc': TrainLoop3DRecNVPatchSingleForwardMVAdvLoss, # default for objaverse
}[args.trainer_name]
logger.log("creating TrainLoop done...")
# th._dynamo.config.verbose=True # th212 required
# th._dynamo.config.suppress_errors = True
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs
train_loop = TrainLoop(
rec_model=auto_encoder,
loss_class=loss_class,
data=data,
eval_data=eval_data,
# compile=args.compile,
**vars(args))
if args.inference:
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())
train_loop.eval_novelview_loop(camera=camera,
save_latent=args.save_latent)
else:
train_loop.run_loop()
def create_argparser(**kwargs):
# defaults.update(model_and_diffusion_defaults())
defaults = dict(
seed=0,
dataset_size=-1,
trainer_name='input_rec',
use_amp=False,
overfitting=False,
num_workers=4,
image_size=128,
image_size_encoder=224,
iterations=150000,
anneal_lr=False,
lr=5e-5,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
eval_batch_size=12,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=50,
eval_interval=2500,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
data_dir="",
eval_data_dir="",
# load_depth=False, # TODO
logdir="/mnt/lustre/yslan/logs/nips23/",
# test warm up pose sampling training
pose_warm_up_iter=-1,
inference=False,
export_latent=False,
save_latent=False,
)
defaults.update(dataset_defaults()) # type: ignore
defaults.update(encoder_and_nsr_defaults()) # type: ignore
defaults.update(loss_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
# os.environ[
# "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging.
# os.environ["TORCH_CPP_LOG_LEVEL"]="INFO"
# os.environ["NCCL_DEBUG"]="INFO"
args = create_argparser().parse_args()
args.local_rank = int(os.environ["LOCAL_RANK"])
# if os.environ['WORLD_SIZE'] > 1:
# args.global_rank = int(os.environ["RANK"])
args.gpus = th.cuda.device_count()
opts = args
args.rendering_kwargs = rendering_options_defaults(opts)
# print(args)
with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=2)
# Launch processes.
print('Launching processes...')
try:
training_loop(args)
# except KeyboardInterrupt as e:
except Exception as e:
# print(e)
traceback.print_exc()
dist_util.cleanup() # clean port and socket when ctrl+c
|