File size: 19,112 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import torch
from typing import Dict, List, Optional, Tuple, Union
import functools
import fsspec
import os
import open_clip
import torch.nn as nn
from functools import partial
import clip
from einops import rearrange, repeat
import kornia
import numpy as np
from inspect import isfunction

from pdb import set_trace as st
# from transformers import CLIPTokenizer, CLIPTextModel

from ...util import (append_dims, autocast, count_params, default,
                     disabled_train, expand_dims_like, instantiate_from_config)

from ..x_transformer import Encoder, TransformerWrapper  # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test


class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError



class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class'):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)

    def forward(self, batch, key=None):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        c = self.embedding(c)
        return c


class TransformerEmbedder(AbstractEncoder):
    """Some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
        super().__init__()
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer))

    def forward(self, tokens):
        tokens = tokens.to(self.device)  # meh
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, x):
        return self(x)


class BERTTokenizer(AbstractEncoder):
    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
    def __init__(self, device="cuda", vq_interface=True, max_length=77):
        super().__init__()
        from transformers import BertTokenizerFast  # TODO: add to reuquirements
        self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
        self.device = device
        self.vq_interface = vq_interface
        self.max_length = max_length

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        return tokens

    @torch.no_grad()
    def encode(self, text):
        tokens = self(text)
        if not self.vq_interface:
            return tokens
        return None, None, [None, None, tokens]

    def decode(self, text):
        return text


class BERTEmbedder(AbstractEncoder):
    """Uses the BERT tokenizr model and add some transformer encoder layers"""
    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
                 device="cuda",use_tokenizer=True, embedding_dropout=0.0):
        super().__init__()
        self.use_tknz_fn = use_tokenizer
        if self.use_tknz_fn:
            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
        self.device = device
        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
                                              emb_dropout=embedding_dropout)

    def forward(self, text):
        if self.use_tknz_fn:
            tokens = self.tknz_fn(text)#.to(self.device)
        else:
            tokens = text
        z = self.transformer(tokens, return_embeddings=True)
        return z

    def encode(self, text):
        # output of length 77
        return self(text)


class SpatialRescaler(nn.Module):
    def __init__(self,
                 n_stages=1,
                 method='bilinear',
                 multiplier=0.5,
                 in_channels=3,
                 out_channels=None,
                 bias=False):
        super().__init__()
        self.n_stages = n_stages
        assert self.n_stages >= 0
        assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
        self.multiplier = multiplier
        self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
        self.remap_output = out_channels is not None
        if self.remap_output:
            print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
            self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)

    def forward(self,x):
        for stage in range(self.n_stages):
            x = self.interpolator(x, scale_factor=self.multiplier)


        if self.remap_output:
            x = self.channel_mapper(x)
        return x

    def encode(self, x):
        return self(x)

class FrozenCLIPEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for text (from Hugging Face)"""
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, use_eos_feature=False):
        super().__init__()
        from transformers import CLIPTokenizer, CLIPTextModel
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPTextModel.from_pretrained(version).to(device)
        self.device = device
        self.max_length = max_length
        self.freeze()
        self.use_eos_feature = use_eos_feature

    def freeze(self):
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        if self.use_eos_feature: # for DiT
            z = outputs.pooler_output # N 77 C
        else:
            z = outputs.last_hidden_state # N 77 C
        return z

    def encode(self, text):
        return self(text)

class TextEmbedder(nn.Module):
    """
    Embeds text prompt into vector representations. Also handles text dropout for classifier-free guidance.
    """
    def __init__(self, dropout_prob=0.1, use_eos_feature=False):
        super().__init__()
        self.text_encodder = FrozenCLIPEmbedder(use_eos_feature=use_eos_feature) # no normalization projection
        self.dropout_prob = dropout_prob
    
    def token_drop(self, text_prompts, force_drop_ids=None):
        """
        Drops text to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = np.random.uniform(0, 1, len(text_prompts)) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = list(np.where(drop_ids, "None", text_prompts))
        # print(labels)
        return labels

    def forward(self, text_prompts, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            text_prompts = self.token_drop(text_prompts, force_drop_ids)
        embeddings = self.text_encodder(text_prompts)
        return embeddings

class FrozenCLIPTextEmbedder(nn.Module):
    """
    Uses the CLIP transformer encoder for text.
    """
    def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True, dropout_prob=0., scale_clip_encoding=None):
        super().__init__()
        self.model, _ = clip.load(version, jit=False, device=device)
        self.device = device
        self.max_length = max_length
        self.n_repeat = n_repeat
        self.normalize = normalize
        self.dropout_prob = dropout_prob
        self.scale_clip_encoding = scale_clip_encoding

    def freeze(self):
        self.model = self.model.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        tokens = clip.tokenize(text).to(self.device)
        z = self.model.encode_text(tokens)
        if self.normalize:
            z = z / torch.linalg.norm(z, dim=1, keepdim=True)

            if self.scale_clip_encoding is not None:
                z = z * self.scale_clip_encoding

        return z

    def token_drop(self, text_prompts, force_drop_ids=None):
        """
        Drops text to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = np.random.uniform(0, 1, len(text_prompts)) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = list(np.where(drop_ids, "None", text_prompts))
        # print(labels)
        return labels


    def encode(self, text):
        z = self(text)

        if z.ndim==2: # match cross attention shape
            z = z[:, None, :]
        z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)

        return z


class FrozenClipImageEmbedder(nn.Module):
    """
        Uses the CLIP image encoder.
        """
    def __init__(
            self,
            model,
            jit=False,
            device='cuda' if torch.cuda.is_available() else 'cpu',
            antialias=False,
            n_repeat=1,
            dropout_prob=0.2, # follow Rodin
            normalize_encoding=False,
            scale_clip_encoding=1.0,
        ):
        super().__init__()
        self.model, _ = clip.load(name=model, device=device, jit=jit)
        self.n_repeat = n_repeat
        self.normalize_encoding = normalize_encoding
        self.scale_clip_encoding = torch.tensor(scale_clip_encoding, dtype=torch.float32, device=device)

        self.antialias = antialias

        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)

        self.dropout_prob = dropout_prob

    def freeze(self):
        self.model = self.model.eval()
        for param in self.parameters():
            param.requires_grad = False


    def preprocess(self, x):
        # normalize to [0,1]
        x = kornia.geometry.resize(x, (224, 224),
                                   interpolation='bicubic',align_corners=True,
                                   antialias=self.antialias)
        x = (x + 1.) / 2.
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std) # type: ignore
        return x

    def token_drop(self, z):
        """
        zero the image encoding to enable classifier-free guidance.
        """
        drop_ids = np.random.uniform(0, 1, z.shape[0]) < self.dropout_prob # idx token to drop
        drop_ids = torch.from_numpy(drop_ids).unsqueeze(1).expand_as(z).bool().to(z.device)
        z = torch.where(drop_ids, torch.zeros_like(z), z)
        return z


    def forward(self, x):
        # x is assumed to be in range [-1,1]
        # return self.model.encode_image(self.preprocess(x))
        z = self.model.encode_image(self.preprocess(x))

        # ? normalized features, seems not working?
        if self.normalize_encoding:
            z = z / torch.linalg.norm(z, dim=1, keepdim=True)
            if self.scale_clip_encoding:
                # st()
                z = z * self.scale_clip_encoding
        
        if self.dropout_prob>0: # for cfg
            z = self.token_drop(z)

        if z.ndim==2:
            # repeat 1 dim, for context shape compatability.
            z = z[:, None, :]
        z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
        return z


class AbstractEmbModel(nn.Module):
    def __init__(self):
        super().__init__()
        self._is_trainable = None
        self._ucg_rate = None
        self._input_key = None

    @property
    def is_trainable(self) -> bool:
        return self._is_trainable

    @property
    def ucg_rate(self) -> Union[float, torch.Tensor]:
        return self._ucg_rate

    @property
    def input_key(self) -> str:
        return self._input_key

    @is_trainable.setter
    def is_trainable(self, value: bool):
        self._is_trainable = value

    @ucg_rate.setter
    def ucg_rate(self, value: Union[float, torch.Tensor]):
        self._ucg_rate = value

    @input_key.setter
    def input_key(self, value: str):
        self._input_key = value

    @is_trainable.deleter
    def is_trainable(self):
        del self._is_trainable

    @ucg_rate.deleter
    def ucg_rate(self):
        del self._ucg_rate

    @input_key.deleter
    def input_key(self):
        del self._input_key



class FrozenOpenCLIPImageEmbedder(AbstractEmbModel):
    """
    Uses the OpenCLIP vision transformer encoder for images
    """

    def __init__(
        self,
        arch="ViT-H-14",
        version="laion2b_s32b_b79k",
        device="cuda",
        max_length=77,
        freeze=True,
        antialias=True,
        ucg_rate=0.0,
        unsqueeze_dim=False,
        repeat_to_max_len=False,
        num_image_crops=0,
        output_tokens=False,
        init_device=None,
    ):
        super().__init__()
        model, _, _ = open_clip.create_model_and_transforms(
            arch,
            device=torch.device(default(init_device, "cpu")),
            pretrained=version,
        )
        del model.transformer
        self.model = model
        self.max_crops = num_image_crops
        self.pad_to_max_len = self.max_crops > 0
        self.repeat_to_max_len = repeat_to_max_len and (not self.pad_to_max_len)
        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()

        self.antialias = antialias

        self.register_buffer(
            "mean", torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False
        )
        self.register_buffer(
            "std", torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False
        )
        self.ucg_rate = ucg_rate
        self.unsqueeze_dim = unsqueeze_dim
        self.stored_batch = None
        self.model.visual.output_tokens = output_tokens
        self.output_tokens = output_tokens

    def preprocess(self, x):
        # normalize to [0,1]
        x = kornia.geometry.resize(
            x,
            (224, 224),
            interpolation="bicubic",
            align_corners=True,
            antialias=self.antialias,
        )
        x = (x + 1.0) / 2.0
        # renormalize according to clip
        x = kornia.enhance.normalize(x, self.mean, self.std)
        return x

    def freeze(self):
        self.model = self.model.eval()
        for param in self.parameters():
            param.requires_grad = False

    @autocast
    def forward(self, image, no_dropout=False):
        z = self.encode_with_vision_transformer(image)
        tokens = None
        if self.output_tokens:
            z, tokens = z[0], z[1]
        z = z.to(image.dtype)
        if self.ucg_rate > 0.0 and not no_dropout and not (self.max_crops > 0):
            z = (
                torch.bernoulli(
                    (1.0 - self.ucg_rate) * torch.ones(z.shape[0], device=z.device)
                )[:, None]
                * z
            )
            if tokens is not None:
                tokens = (
                    expand_dims_like(
                        torch.bernoulli(
                            (1.0 - self.ucg_rate)
                            * torch.ones(tokens.shape[0], device=tokens.device)
                        ),
                        tokens,
                    )
                    * tokens
                )
        if self.unsqueeze_dim:
            z = z[:, None, :]
        if self.output_tokens:
            assert not self.repeat_to_max_len
            assert not self.pad_to_max_len
            return tokens, z
        if self.repeat_to_max_len:
            if z.dim() == 2:
                z_ = z[:, None, :]
            else:
                z_ = z
            return repeat(z_, "b 1 d -> b n d", n=self.max_length), z
        elif self.pad_to_max_len:
            assert z.dim() == 3
            z_pad = torch.cat(
                (
                    z,
                    torch.zeros(
                        z.shape[0],
                        self.max_length - z.shape[1],
                        z.shape[2],
                        device=z.device,
                    ),
                ),
                1,
            )
            return z_pad, z_pad[:, 0, ...]
        return z

    def encode_with_vision_transformer(self, img):
        # if self.max_crops > 0:
        #    img = self.preprocess_by_cropping(img)
        if img.dim() == 5:
            assert self.max_crops == img.shape[1]
            img = rearrange(img, "b n c h w -> (b n) c h w")
        img = self.preprocess(img)
        if not self.output_tokens:
            assert not self.model.visual.output_tokens
            x = self.model.visual(img)
            tokens = None
        else:
            assert self.model.visual.output_tokens
            x, tokens = self.model.visual(img)
        if self.max_crops > 0:
            x = rearrange(x, "(b n) d -> b n d", n=self.max_crops)
            # drop out between 0 and all along the sequence axis
            x = (
                torch.bernoulli(
                    (1.0 - self.ucg_rate)
                    * torch.ones(x.shape[0], x.shape[1], 1, device=x.device)
                )
                * x
            )
            if tokens is not None:
                tokens = rearrange(tokens, "(b n) t d -> b t (n d)", n=self.max_crops)
                print(
                    f"You are running very experimental token-concat in {self.__class__.__name__}. "
                    f"Check what you are doing, and then remove this message."
                )
        if self.output_tokens:
            return x, tokens
        return x

    def encode(self, text):
        return self(text)

class FrozenOpenCLIPImagePredictionEmbedder(AbstractEmbModel):
    def __init__(
        self,
        # open_clip_embedding_config: Dict,
        n_cond_frames: int,
        n_copies: int,
        open_clip_module,
    ):
        super().__init__()

        self.n_cond_frames = n_cond_frames
        self.n_copies = n_copies
        # self.open_clip = instantiate_from_config(open_clip_embedding_config)
        self.open_clip = open_clip_module

    def forward(self, vid):
        vid = self.open_clip(vid)
        vid = rearrange(vid, "(b t) d -> b t d", t=self.n_cond_frames)
        vid = repeat(vid, "b t d -> (b s) t d", s=self.n_copies)

        return vid


if __name__ == "__main__":
    from ldm.util import count_params
    model = FrozenCLIPEmbedder()
    count_params(model, verbose=True)