---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CoSENTLoss
base_model: ymelka/camembert-cosmetic-finetuned
datasets:
- PhilipMay/stsb_multi_mt
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Nous nous déplaçons "... par rapport au cadre de repos cosmique
en mouvement ... à environ 371 km/s vers la constellation du Lion".
sentences:
- La dame a fait frire la viande panée dans de l'huile chaude.
- Il n'y a pas d'alambic qui ne soit pas relatif à un autre objet.
- Le joueur de basket-ball est sur le point de marquer des points pour son équipe.
- source_sentence: Le professeur Burkhauser a effectué des recherches approfondies
sur les personnes qui sont pénalisées par l'augmentation du salaire minimum.
sentences:
- Un adolescent parle à une fille par le biais d'une webcam.
- Une femme est en train de couper des oignons verts.
- Les lois sur le salaire minimum nuisent le plus aux personnes les moins qualifiées
et les moins productives.
- source_sentence: Bien que le terme "reine" puisse faire référence à la fois à la
reine régente (souveraine) ou à la reine consort, le roi a toujours été le souverain.
sentences:
- Des moutons paissent dans le champ devant une rangée d'arbres.
- Il y a une très bonne raison de ne pas appeler le conjoint de la Reine "Roi" -
parce qu'il n'est pas le Roi.
- Un groupe de personnes âgées pose autour d'une table à manger.
- source_sentence: Deux pygargues à tête blanche perchés sur une branche.
sentences:
- Un groupe de militaires joue dans un quintette de cuivres.
- Deux aigles sont perchés sur une branche.
- Un homme qui joue de la guitare sous la pluie.
- source_sentence: Un homme joue de la guitare.
sentences:
- Il est possible qu'un système solaire comme le nôtre existe en dehors d'une galaxie.
- Un homme joue de la flûte.
- Un homme est en train de manger une banane.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on ymelka/camembert-cosmetic-finetuned
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsb fr dev
type: stsb-fr-dev
metrics:
- type: pearson_cosine
value: 0.6401461834329478
name: Pearson Cosine
- type: spearman_cosine
value: 0.6661576168424006
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7077411059971963
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7104395816607704
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6183470655093759
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6339424060254548
name: Spearman Euclidean
- type: pearson_dot
value: 0.18614455072383299
name: Pearson Dot
- type: spearman_dot
value: 0.21677402345623561
name: Spearman Dot
- type: pearson_max
value: 0.7077411059971963
name: Pearson Max
- type: spearman_max
value: 0.7104395816607704
name: Spearman Max
- type: pearson_cosine
value: 0.834390325106948
name: Pearson Cosine
- type: spearman_cosine
value: 0.8564941342147334
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8518548236293758
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.854193303324745
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8541012365072966
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8555434573522197
name: Spearman Euclidean
- type: pearson_dot
value: 0.4989804086580052
name: Pearson Dot
- type: spearman_dot
value: 0.5094008186566353
name: Spearman Dot
- type: pearson_max
value: 0.8541012365072966
name: Pearson Max
- type: spearman_max
value: 0.8564941342147334
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsb fr test
type: stsb-fr-test
metrics:
- type: pearson_cosine
value: 0.7979696368103
name: Pearson Cosine
- type: spearman_cosine
value: 0.8219240068315988
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8237827107867745
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8221440625680553
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8230384709547542
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8218369251066925
name: Spearman Euclidean
- type: pearson_dot
value: 0.4089365107737232
name: Pearson Dot
- type: spearman_dot
value: 0.4588995887587045
name: Spearman Dot
- type: pearson_max
value: 0.8237827107867745
name: Pearson Max
- type: spearman_max
value: 0.8221440625680553
name: Spearman Max
---
# SentenceTransformer based on ymelka/camembert-cosmetic-finetuned
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ymelka/camembert-cosmetic-similarity")
# Run inference
sentences = [
'Un homme joue de la guitare.',
'Un homme est en train de manger une banane.',
'Un homme joue de la flûte.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `stsb-fr-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6401 |
| **spearman_cosine** | **0.6662** |
| pearson_manhattan | 0.7077 |
| spearman_manhattan | 0.7104 |
| pearson_euclidean | 0.6183 |
| spearman_euclidean | 0.6339 |
| pearson_dot | 0.1861 |
| spearman_dot | 0.2168 |
| pearson_max | 0.7077 |
| spearman_max | 0.7104 |
#### Semantic Similarity
* Dataset: `stsb-fr-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8344 |
| **spearman_cosine** | **0.8565** |
| pearson_manhattan | 0.8519 |
| spearman_manhattan | 0.8542 |
| pearson_euclidean | 0.8541 |
| spearman_euclidean | 0.8555 |
| pearson_dot | 0.499 |
| spearman_dot | 0.5094 |
| pearson_max | 0.8541 |
| spearman_max | 0.8565 |
#### Semantic Similarity
* Dataset: `stsb-fr-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.798 |
| **spearman_cosine** | **0.8219** |
| pearson_manhattan | 0.8238 |
| spearman_manhattan | 0.8221 |
| pearson_euclidean | 0.823 |
| spearman_euclidean | 0.8218 |
| pearson_dot | 0.4089 |
| spearman_dot | 0.4589 |
| pearson_max | 0.8238 |
| spearman_max | 0.8221 |
## Training Details
### Training Dataset
#### PhilipMay/stsb_multi_mt
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Un avion est en train de décoller.
| Un avion est en train de décoller.
| 5.0
|
| Un homme joue d'une grande flûte.
| Un homme joue de la flûte.
| 3.799999952316284
|
| Un homme étale du fromage râpé sur une pizza.
| Un homme étale du fromage râpé sur une pizza non cuite.
| 3.799999952316284
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Dataset
#### PhilipMay/stsb_multi_mt
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | Un homme avec un casque de sécurité est en train de danser.
| Un homme portant un casque de sécurité est en train de danser.
| 5.0
|
| Un jeune enfant monte à cheval.
| Un enfant monte à cheval.
| 4.75
|
| Un homme donne une souris à un serpent.
| L'homme donne une souris au serpent.
| 5.0
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters