Safetensors
llama
alignment-handbook
trl
dpo
Generated from Trainer
File size: 11,573 Bytes
23ecbd4
 
 
 
a3828d3
23ecbd4
 
 
a3828d3
 
 
 
 
 
 
23ecbd4
 
 
 
 
 
 
 
 
 
 
a3828d3
23ecbd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: other
base_model: deepseek-ai/deepseek-llm-7b-chat
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- self-generate/ds_chat_original_cn_mining_oj_iter0-binarized
- self-generate/ds_chat_original_cn_mining_sandbox_iter0-binarized
- self-generate/ds_chat_original_cn_rl_oj_iter0-binarized
model-index:
- name: ds_chat_sppo_hard_new_iter0_2024-09-14-21.15
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://ml.byteintl.net/experiment/tracking/detail?Id=project_20240915_20321b8f&selectedTrial=run_20240915_971b4903)
# ds_chat_sppo_hard_new_iter0_2024-09-14-21.15

This model is a fine-tuned version of [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat) on the self-generate/ds_chat_original_cn_mining_oj_iter0-binarized, the self-generate/ds_chat_original_cn_mining_sandbox_iter0-binarized and the self-generate/ds_chat_original_cn_rl_oj_iter0-binarized datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4951
- Rewards/chosen: 0.0190
- Rewards/rejected: -0.0009
- Rewards/accuracies: 0.3684
- Rewards/margins: 0.0199
- Logps/rejected: -63.9738
- Logps/chosen: -121.2440
- Logits/rejected: 1.7159
- Logits/chosen: 1.6562
- Debug/policy Chosen Logits: 1.6562
- Debug/policy Rejected Logits: 1.7159
- Debug/policy Chosen Logps: -121.2440
- Debug/policy Rejected Logps: -63.9738
- Debug/reference Chosen Logps: -123.1481
- Debug/reference Rejected Logps: -63.8871

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 8.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Debug/policy Chosen Logits | Debug/policy Rejected Logits | Debug/policy Chosen Logps | Debug/policy Rejected Logps | Debug/reference Chosen Logps | Debug/reference Rejected Logps |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------------------------:|:----------------------------:|:-------------------------:|:---------------------------:|:----------------------------:|:------------------------------:|
| 0.4997        | 0.3623 | 100  | 0.4979          | 0.0051         | -0.0005          | 0.3421             | 0.0056          | -63.9373       | -122.6352    | 1.7236          | 1.6612        | 1.6612                     | 1.7236                       | -122.6352                 | -63.9373                    | -123.1481                    | -63.8871                       |
| 0.5018        | 0.7246 | 200  | 0.4996          | 0.0156         | 0.0052           | 0.3421             | 0.0104          | -63.3698       | -121.5860    | 1.7403          | 1.6799        | 1.6799                     | 1.7403                       | -121.5860                 | -63.3698                    | -123.1481                    | -63.8871                       |
| 0.4991        | 1.0870 | 300  | 0.4987          | 0.0190         | 0.0068           | 0.3158             | 0.0123          | -63.2120       | -121.2448    | 1.7605          | 1.7000        | 1.7000                     | 1.7605                       | -121.2448                 | -63.2120                    | -123.1481                    | -63.8871                       |
| 0.5007        | 1.4493 | 400  | 0.4975          | 0.0176         | 0.0038           | 0.2895             | 0.0139          | -63.5094       | -121.3837    | 1.7412          | 1.6815        | 1.6815                     | 1.7412                       | -121.3837                 | -63.5094                    | -123.1481                    | -63.8871                       |
| 0.5006        | 1.8116 | 500  | 0.4966          | 0.0132         | 0.0019           | 0.3553             | 0.0113          | -63.6979       | -121.8322    | 1.7278          | 1.6669        | 1.6669                     | 1.7278                       | -121.8322                 | -63.6979                    | -123.1481                    | -63.8871                       |
| 0.4944        | 2.1739 | 600  | 0.4969          | 0.0196         | 0.0035           | 0.3421             | 0.0160          | -63.5333       | -121.1920    | 1.7400          | 1.6805        | 1.6805                     | 1.7400                       | -121.1920                 | -63.5333                    | -123.1481                    | -63.8871                       |
| 0.4988        | 2.5362 | 700  | 0.4959          | 0.0175         | 0.0032           | 0.3553             | 0.0143          | -63.5656       | -121.4005    | 1.7441          | 1.6843        | 1.6843                     | 1.7441                       | -121.4005                 | -63.5656                    | -123.1481                    | -63.8871                       |
| 0.4975        | 2.8986 | 800  | 0.4967          | 0.0221         | 0.0072           | 0.3553             | 0.0150          | -63.1701       | -120.9358    | 1.7439          | 1.6851        | 1.6851                     | 1.7439                       | -120.9358                 | -63.1701                    | -123.1481                    | -63.8871                       |
| 0.495         | 3.2609 | 900  | 0.4955          | 0.0202         | 0.0021           | 0.3421             | 0.0180          | -63.6741       | -121.1320    | 1.7492          | 1.6875        | 1.6875                     | 1.7492                       | -121.1320                 | -63.6741                    | -123.1481                    | -63.8871                       |
| 0.4961        | 3.6232 | 1000 | 0.4958          | 0.0210         | 0.0019           | 0.3421             | 0.0191          | -63.6937       | -121.0436    | 1.7449          | 1.6854        | 1.6854                     | 1.7449                       | -121.0436                 | -63.6937                    | -123.1481                    | -63.8871                       |
| 0.4979        | 3.9855 | 1100 | 0.4952          | 0.0160         | -0.0011          | 0.3816             | 0.0171          | -63.9974       | -121.5451    | 1.7309          | 1.6720        | 1.6720                     | 1.7309                       | -121.5451                 | -63.9974                    | -123.1481                    | -63.8871                       |
| 0.4985        | 4.3478 | 1200 | 0.4958          | 0.0157         | 0.0002           | 0.3289             | 0.0154          | -63.8621       | -121.5809    | 1.7273          | 1.6675        | 1.6675                     | 1.7273                       | -121.5809                 | -63.8621                    | -123.1481                    | -63.8871                       |
| 0.4977        | 4.7101 | 1300 | 0.4968          | 0.0195         | 0.0012           | 0.3158             | 0.0182          | -63.7631       | -121.2019    | 1.7106          | 1.6512        | 1.6512                     | 1.7106                       | -121.2019                 | -63.7631                    | -123.1481                    | -63.8871                       |
| 0.4966        | 5.0725 | 1400 | 0.4958          | 0.0186         | 0.0002           | 0.3289             | 0.0184          | -63.8648       | -121.2832    | 1.7173          | 1.6585        | 1.6585                     | 1.7173                       | -121.2832                 | -63.8648                    | -123.1481                    | -63.8871                       |
| 0.4935        | 5.4348 | 1500 | 0.4958          | 0.0160         | 0.0005           | 0.2632             | 0.0155          | -63.8391       | -121.5465    | 1.7152          | 1.6570        | 1.6570                     | 1.7152                       | -121.5465                 | -63.8391                    | -123.1481                    | -63.8871                       |
| 0.4975        | 5.7971 | 1600 | 0.4963          | 0.0197         | 0.0018           | 0.3026             | 0.0179          | -63.7076       | -121.1778    | 1.7160          | 1.6571        | 1.6571                     | 1.7160                       | -121.1778                 | -63.7076                    | -123.1481                    | -63.8871                       |
| 0.4934        | 6.1594 | 1700 | 0.4958          | 0.0142         | -0.0019          | 0.3553             | 0.0162          | -64.0808       | -121.7252    | 1.7082          | 1.6502        | 1.6502                     | 1.7082                       | -121.7252                 | -64.0808                    | -123.1481                    | -63.8871                       |
| 0.4956        | 6.5217 | 1800 | 0.4957          | 0.0210         | 0.0005           | 0.3421             | 0.0205          | -63.8361       | -121.0436    | 1.7185          | 1.6581        | 1.6581                     | 1.7185                       | -121.0436                 | -63.8361                    | -123.1481                    | -63.8871                       |
| 0.496         | 6.8841 | 1900 | 0.4958          | 0.0212         | 0.0018           | 0.2895             | 0.0194          | -63.7090       | -121.0307    | 1.7158          | 1.6582        | 1.6582                     | 1.7158                       | -121.0307                 | -63.7090                    | -123.1481                    | -63.8871                       |
| 0.495         | 7.2464 | 2000 | 0.4953          | 0.0175         | 0.0019           | 0.3289             | 0.0156          | -63.6983       | -121.4027    | 1.7189          | 1.6600        | 1.6600                     | 1.7189                       | -121.4027                 | -63.6983                    | -123.1481                    | -63.8871                       |
| 0.4967        | 7.6087 | 2100 | 0.4958          | 0.0202         | -0.0001          | 0.2895             | 0.0203          | -63.8998       | -121.1321    | 1.7188          | 1.6592        | 1.6592                     | 1.7188                       | -121.1321                 | -63.8998                    | -123.1481                    | -63.8871                       |
| 0.4948        | 7.9710 | 2200 | 0.4951          | 0.0190         | -0.0009          | 0.3684             | 0.0199          | -63.9738       | -121.2440    | 1.7159          | 1.6562        | 1.6562                     | 1.7159                       | -121.2440                 | -63.9738                    | -123.1481                    | -63.8871                       |


### Framework versions

- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1