File size: 19,787 Bytes
94c21fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc05d16
94c21fd
db820d9
94c21fd
db820d9
94c21fd
db820d9
94c21fd
db820d9
 
 
 
 
94c21fd
bc05d16
db820d9
bc05d16
db820d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3778a15
 
db820d9
 
 
 
 
 
 
 
 
 
 
0989f33
db820d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57f366c
 
 
 
 
 
 
db820d9
 
 
 
 
 
b6d5518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7708da0
 
 
 
66f9330
 
9e3e5e2
66f9330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
license: apache-2.0
language:
  - zh
widget:
  - text: >-
      A chat between a curious user and an artificial intelligence assistant.
      The assistant gives helpful, detailed, and polite answers to the user's
      questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Acknowledge license to accept the repository.
extra_gated_prompt: Please contact the author for access.
extra_gated_button_content: Acknowledge license 同意以上內容
extra_gated_fields:
  Name: text
  Mail: text
  Organization: text
  Country: text
  Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
  使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟

# Model Card for Taiwan LLM 13B v2.0 chat

Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan. 
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning. 
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances. 
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance. 
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).


## Model description

- **Model type:** A 13B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
- **Finetuned from model:** [yentinglin/Taiwan-LLM-13B-v2.0-base](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-base)

### Model Sources

<!-- Provide the basic links for the model. -->

- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
- **Demo:** https://twllm.com/

## Performance


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)

TMMLUS+ score: 24.76727075757576

## Intended uses

Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:

```python
# pip install transformers>=4.34
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-13B-v2.0-chat", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "你是一個人工智慧助理",
    },
    {"role": "user", "content": "東北季風如何影響台灣氣候?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

### Training hyperparameters

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)

The following hyperparameters were used during training:
- learning_rate: 5e-05
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5.0

## Citation

If you find Taiwan LLM is useful in your work, please cite it with:

```
@misc{lin2023taiwan,
      title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, 
      author={Yen-Ting Lin and Yun-Nung Chen},
      year={2023},
      eprint={2311.17487},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

# Acknowledgement

Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.

## Open LLM Leaderboard
|                         Task                         |Version|    Metric    |Value |   |Stderr|
|------------------------------------------------------|------:|--------------|-----:|---|-----:|
|leaderboard:arc:challenge:25                          |      0|acc           |0.5529|±  |0.0145|
|                                                      |       |acc_norm      |0.5862|±  |0.0144|
|leaderboard:gsm8k:5                                   |      0|qem           |0.3177|±  |0.0128|
|leaderboard:hellaswag:10                              |      0|acc           |0.6307|±  |0.0048|
|                                                      |       |acc_norm      |0.8327|±  |0.0037|
|leaderboard:mmlu:_average:5                           |       |acc           |0.5483|±  |0.0356|
|leaderboard:mmlu:abstract_algebra:5                   |      0|acc           |0.3400|±  |0.0476|
|leaderboard:mmlu:anatomy:5                            |      0|acc           |0.5111|±  |0.0432|
|leaderboard:mmlu:astronomy:5                          |      0|acc           |0.5789|±  |0.0402|
|leaderboard:mmlu:business_ethics:5                    |      0|acc           |0.5100|±  |0.0502|
|leaderboard:mmlu:clinical_knowledge:5                 |      0|acc           |0.6000|±  |0.0302|
|leaderboard:mmlu:college_biology:5                    |      0|acc           |0.5764|±  |0.0413|
|leaderboard:mmlu:college_chemistry:5                  |      0|acc           |0.4100|±  |0.0494|
|leaderboard:mmlu:college_computer_science:5           |      0|acc           |0.4500|±  |0.0500|
|leaderboard:mmlu:college_mathematics:5                |      0|acc           |0.3800|±  |0.0488|
|leaderboard:mmlu:college_medicine:5                   |      0|acc           |0.5434|±  |0.0380|
|leaderboard:mmlu:college_physics:5                    |      0|acc           |0.2941|±  |0.0453|
|leaderboard:mmlu:computer_security:5                  |      0|acc           |0.7000|±  |0.0461|
|leaderboard:mmlu:conceptual_physics:5                 |      0|acc           |0.4468|±  |0.0325|
|leaderboard:mmlu:econometrics:5                       |      0|acc           |0.2719|±  |0.0419|
|leaderboard:mmlu:electrical_engineering:5             |      0|acc           |0.4552|±  |0.0415|
|leaderboard:mmlu:elementary_mathematics:5             |      0|acc           |0.3175|±  |0.0240|
|leaderboard:mmlu:formal_logic:5                       |      0|acc           |0.3413|±  |0.0424|
|leaderboard:mmlu:global_facts:5                       |      0|acc           |0.3700|±  |0.0485|
|leaderboard:mmlu:high_school_biology:5                |      0|acc           |0.6323|±  |0.0274|
|leaderboard:mmlu:high_school_chemistry:5              |      0|acc           |0.4581|±  |0.0351|
|leaderboard:mmlu:high_school_computer_science:5       |      0|acc           |0.5400|±  |0.0501|
|leaderboard:mmlu:high_school_european_history:5       |      0|acc           |0.6364|±  |0.0376|
|leaderboard:mmlu:high_school_geography:5              |      0|acc           |0.6970|±  |0.0327|
|leaderboard:mmlu:high_school_government_and_politics:5|      0|acc           |0.7617|±  |0.0307|
|leaderboard:mmlu:high_school_macroeconomics:5         |      0|acc           |0.4974|±  |0.0254|
|leaderboard:mmlu:high_school_mathematics:5            |      0|acc           |0.3296|±  |0.0287|
|leaderboard:mmlu:high_school_microeconomics:5         |      0|acc           |0.5336|±  |0.0324|
|leaderboard:mmlu:high_school_physics:5                |      0|acc           |0.3709|±  |0.0394|
|leaderboard:mmlu:high_school_psychology:5             |      0|acc           |0.7468|±  |0.0186|
|leaderboard:mmlu:high_school_statistics:5             |      0|acc           |0.4074|±  |0.0335|
|leaderboard:mmlu:high_school_us_history:5             |      0|acc           |0.7108|±  |0.0318|
|leaderboard:mmlu:high_school_world_history:5          |      0|acc           |0.7046|±  |0.0297|
|leaderboard:mmlu:human_aging:5                        |      0|acc           |0.6323|±  |0.0324|
|leaderboard:mmlu:human_sexuality:5                    |      0|acc           |0.5878|±  |0.0432|
|leaderboard:mmlu:international_law:5                  |      0|acc           |0.6694|±  |0.0429|
|leaderboard:mmlu:jurisprudence:5                      |      0|acc           |0.7037|±  |0.0441|
|leaderboard:mmlu:logical_fallacies:5                  |      0|acc           |0.6564|±  |0.0373|
|leaderboard:mmlu:machine_learning:5                   |      0|acc           |0.3393|±  |0.0449|
|leaderboard:mmlu:management:5                         |      0|acc           |0.7087|±  |0.0450|
|leaderboard:mmlu:marketing:5                          |      0|acc           |0.8333|±  |0.0244|
|leaderboard:mmlu:medical_genetics:5                   |      0|acc           |0.5400|±  |0.0501|
|leaderboard:mmlu:miscellaneous:5                      |      0|acc           |0.7382|±  |0.0157|
|leaderboard:mmlu:moral_disputes:5                     |      0|acc           |0.6127|±  |0.0262|
|leaderboard:mmlu:moral_scenarios:5                    |      0|acc           |0.3788|±  |0.0162|
|leaderboard:mmlu:nutrition:5                          |      0|acc           |0.6046|±  |0.0280|
|leaderboard:mmlu:philosophy:5                         |      0|acc           |0.6270|±  |0.0275|
|leaderboard:mmlu:prehistory:5                         |      0|acc           |0.6204|±  |0.0270|
|leaderboard:mmlu:professional_accounting:5            |      0|acc           |0.3582|±  |0.0286|
|leaderboard:mmlu:professional_law:5                   |      0|acc           |0.3931|±  |0.0125|
|leaderboard:mmlu:professional_medicine:5              |      0|acc           |0.5184|±  |0.0304|
|leaderboard:mmlu:professional_psychology:5            |      0|acc           |0.5556|±  |0.0201|
|leaderboard:mmlu:public_relations:5                   |      0|acc           |0.6818|±  |0.0446|
|leaderboard:mmlu:security_studies:5                   |      0|acc           |0.6122|±  |0.0312|
|leaderboard:mmlu:sociology:5                          |      0|acc           |0.7164|±  |0.0319|
|leaderboard:mmlu:us_foreign_policy:5                  |      0|acc           |0.8200|±  |0.0386|
|leaderboard:mmlu:virology:5                           |      0|acc           |0.4578|±  |0.0388|
|leaderboard:mmlu:world_religions:5                    |      0|acc           |0.7661|±  |0.0325|
|leaderboard:truthfulqa:mc:0                           |      0|truthfulqa_mc1|0.2840|±  |0.0158|
|                                                      |       |truthfulqa_mc2|0.4423|±  |0.0146|
|leaderboard:winogrande:5                              |      0|acc           |0.7593|±  |0.0120|


## TC-Eval
|                                      Task                                       |Version|Metric|Value |   |Stderr|
|---------------------------------------------------------------------------------|------:|------|-----:|---|-----:|
|community:tc-eval-v2:penguin_table:0|      0|acc   |0.2361|±  |0.0355|
|community:tc-eval-v2:_average:5                                                  |       |acc   |0.3508|±  |0.0318|
|community:tc-eval-v2:tmmluplus-accounting:5                                      |      0|acc   |0.2565|±  |0.0317|
|community:tc-eval-v2:tmmluplus-administrative_law:5                              |      0|acc   |0.2833|±  |0.0220|
|community:tc-eval-v2:tmmluplus-advance_chemistry:5                               |      0|acc   |0.3333|±  |0.0427|
|community:tc-eval-v2:tmmluplus-agriculture:5                                     |      0|acc   |0.1987|±  |0.0326|
|community:tc-eval-v2:tmmluplus-anti_money_laundering:5                           |      0|acc   |0.5597|±  |0.0430|
|community:tc-eval-v2:tmmluplus-auditing:5                                        |      0|acc   |0.2836|±  |0.0192|
|community:tc-eval-v2:tmmluplus-basic_medical_science:5                           |      0|acc   |0.2841|±  |0.0146|
|community:tc-eval-v2:tmmluplus-business_management:5                             |      0|acc   |0.4245|±  |0.0421|
|community:tc-eval-v2:tmmluplus-chinese_language_and_literature:5                 |      0|acc   |0.2714|±  |0.0316|
|community:tc-eval-v2:tmmluplus-clinical_psychology:5                             |      0|acc   |0.3840|±  |0.0437|
|community:tc-eval-v2:tmmluplus-computer_science:5                                |      0|acc   |0.4195|±  |0.0375|
|community:tc-eval-v2:tmmluplus-culinary_skills:5                                 |      0|acc   |0.4589|±  |0.0292|
|community:tc-eval-v2:tmmluplus-dentistry:5                                       |      0|acc   |0.3885|±  |0.0244|
|community:tc-eval-v2:tmmluplus-economics:5                                       |      0|acc   |0.3053|±  |0.0233|
|community:tc-eval-v2:tmmluplus-education:5                                       |      0|acc   |0.4355|±  |0.0447|
|community:tc-eval-v2:tmmluplus-education_(profession_level):5                    |      0|acc   |0.2819|±  |0.0204|
|community:tc-eval-v2:tmmluplus-educational_psychology:5                          |      0|acc   |0.4489|±  |0.0376|
|community:tc-eval-v2:tmmluplus-engineering_math:5                                |      0|acc   |0.2718|±  |0.0441|
|community:tc-eval-v2:tmmluplus-finance_banking:5                                 |      0|acc   |0.3037|±  |0.0397|
|community:tc-eval-v2:tmmluplus-financial_analysis:5                              |      0|acc   |0.2801|±  |0.0230|
|community:tc-eval-v2:tmmluplus-fire_science:5                                    |      0|acc   |0.2500|±  |0.0390|
|community:tc-eval-v2:tmmluplus-general_principles_of_law:5                       |      0|acc   |0.3113|±  |0.0452|
|community:tc-eval-v2:tmmluplus-geography_of_taiwan:5                             |      0|acc   |0.4492|±  |0.0180|
|community:tc-eval-v2:tmmluplus-human_behavior:5                                  |      0|acc   |0.3883|±  |0.0278|
|community:tc-eval-v2:tmmluplus-insurance_studies:5                               |      0|acc   |0.3487|±  |0.0173|
|community:tc-eval-v2:tmmluplus-introduction_to_law:5                             |      0|acc   |0.3165|±  |0.0303|
|community:tc-eval-v2:tmmluplus-jce_humanities:5                                  |      0|acc   |0.3444|±  |0.0504|
|community:tc-eval-v2:tmmluplus-junior_chemistry:5                                |      0|acc   |0.3158|±  |0.0322|
|community:tc-eval-v2:tmmluplus-junior_chinese_exam:5                             |      0|acc   |0.4171|±  |0.0374|
|community:tc-eval-v2:tmmluplus-junior_math_exam:5                                |      0|acc   |0.2286|±  |0.0318|
|community:tc-eval-v2:tmmluplus-junior_science_exam:5                             |      0|acc   |0.3427|±  |0.0326|
|community:tc-eval-v2:tmmluplus-junior_social_studies:5                           |      0|acc   |0.4683|±  |0.0446|
|community:tc-eval-v2:tmmluplus-logic_reasoning:5                                 |      0|acc   |0.2734|±  |0.0379|
|community:tc-eval-v2:tmmluplus-macroeconomics:5                                  |      0|acc   |0.3187|±  |0.0230|
|community:tc-eval-v2:tmmluplus-management_accounting:5                           |      0|acc   |0.2977|±  |0.0313|
|community:tc-eval-v2:tmmluplus-marketing_management:5                            |      0|acc   |0.4624|±  |0.0520|
|community:tc-eval-v2:tmmluplus-mechanical:5                                      |      0|acc   |0.4831|±  |0.0462|
|community:tc-eval-v2:tmmluplus-music:5                                           |      0|acc   |0.3993|±  |0.0294|
|community:tc-eval-v2:tmmluplus-national_protection:5                             |      0|acc   |0.4929|±  |0.0345|
|community:tc-eval-v2:tmmluplus-nautical_science:5                                |      0|acc   |0.2777|±  |0.0191|
|community:tc-eval-v2:tmmluplus-occupational_therapy_for_psychological_disorders:5|      0|acc   |0.4438|±  |0.0213|
|community:tc-eval-v2:tmmluplus-official_document_management:5                    |      0|acc   |0.3559|±  |0.0322|
|community:tc-eval-v2:tmmluplus-optometry:5                                       |      0|acc   |0.2804|±  |0.0148|
|community:tc-eval-v2:tmmluplus-organic_chemistry:5                               |      0|acc   |0.3486|±  |0.0459|
|community:tc-eval-v2:tmmluplus-pharmacology:5                                    |      0|acc   |0.3397|±  |0.0197|
|community:tc-eval-v2:tmmluplus-pharmacy:5                                        |      0|acc   |0.2174|±  |0.0209|
|community:tc-eval-v2:tmmluplus-physical_education:5                              |      0|acc   |0.3966|±  |0.0367|
|community:tc-eval-v2:tmmluplus-physics:5                                         |      0|acc   |0.2371|±  |0.0434|
|community:tc-eval-v2:tmmluplus-politic_science:5                                 |      0|acc   |0.3407|±  |0.0150|
|community:tc-eval-v2:tmmluplus-real_estate:5                                     |      0|acc   |0.3804|±  |0.0509|
|community:tc-eval-v2:tmmluplus-secondary_physics:5                               |      0|acc   |0.3393|±  |0.0449|
|community:tc-eval-v2:tmmluplus-statistics_and_machine_learning:5                 |      0|acc   |0.3438|±  |0.0318|
|community:tc-eval-v2:tmmluplus-taiwanese_hokkien:5                               |      0|acc   |0.2636|±  |0.0389|
|community:tc-eval-v2:tmmluplus-taxation:5                                        |      0|acc   |0.2507|±  |0.0224|
|community:tc-eval-v2:tmmluplus-technical:5                                       |      0|acc   |0.4204|±  |0.0247|
|community:tc-eval-v2:tmmluplus-three_principles_of_people:5                      |      0|acc   |0.5396|±  |0.0424|
|community:tc-eval-v2:tmmluplus-trade:5                                           |      0|acc   |0.2251|±  |0.0187|
|community:tc-eval-v2:tmmluplus-traditional_chinese_medicine_clinical_medicine:5  |      0|acc   |0.3094|±  |0.0278|
|community:tc-eval-v2:tmmluplus-trust_practice:5                                  |      0|acc   |0.3292|±  |0.0235|
|community:tc-eval-v2:tmmluplus-ttqav2:5                                          |      0|acc   |0.6726|±  |0.0443|
|community:tc-eval-v2:tmmluplus-tve_chinese_language:5                            |      0|acc   |0.4161|±  |0.0225|
|community:tc-eval-v2:tmmluplus-tve_design:5                                      |      0|acc   |0.4542|±  |0.0227|
|community:tc-eval-v2:tmmluplus-tve_mathematics:5                                 |      0|acc   |0.2733|±  |0.0365|
|community:tc-eval-v2:tmmluplus-tve_natural_sciences:5                            |      0|acc   |0.3349|±  |0.0229|
|community:tc-eval-v2:tmmluplus-veterinary_pathology:5                            |      0|acc   |0.2544|±  |0.0259|
|community:tc-eval-v2:tmmluplus-veterinary_pharmacology:5                         |      0|acc   |0.3259|±  |0.0202|