File size: 20,041 Bytes
94c21fd bc05d16 94c21fd db820d9 94c21fd db820d9 94c21fd db820d9 94c21fd db820d9 94c21fd bc05d16 db820d9 bc05d16 db820d9 3778a15 db820d9 0989f33 db820d9 57f366c db820d9 b6d5518 7708da0 66f9330 82d9c36 9e3e5e2 66f9330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
license: apache-2.0
language:
- zh
widget:
- text: >-
A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user's
questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Acknowledge license to accept the repository.
extra_gated_prompt: Please contact the author for access.
extra_gated_button_content: Acknowledge license 同意以上內容
extra_gated_fields:
Name: text
Mail: text
Organization: text
Country: text
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
# Model Card for Taiwan LLM 13B v2.0 chat
Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
## Model description
- **Model type:** A 13B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
- **Finetuned from model:** [yentinglin/Taiwan-LLM-13B-v2.0-base](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-base)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
- **Demo:** https://twllm.com/
## Performance
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
TMMLUS+ score: 24.76727075757576
## Intended uses
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# pip install transformers>=4.34
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-13B-v2.0-chat", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "你是一個人工智慧助理",
},
{"role": "user", "content": "東北季風如何影響台灣氣候?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
### Training hyperparameters
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
The following hyperparameters were used during training:
- learning_rate: 5e-05
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5.0
## Citation
If you find Taiwan LLM is useful in your work, please cite it with:
```
@misc{lin2023taiwan,
title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model},
author={Yen-Ting Lin and Yun-Nung Chen},
year={2023},
eprint={2311.17487},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# Acknowledgement
Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.
## Open LLM Leaderboard
| Task |Version| Metric |Value | |Stderr|
|------------------------------------------------------|------:|--------------|-----:|---|-----:|
|leaderboard:arc:challenge:25 | 0|acc |0.5529|± |0.0145|
| | |acc_norm |0.5862|± |0.0144|
|leaderboard:gsm8k:5 | 0|qem |0.3177|± |0.0128|
|leaderboard:hellaswag:10 | 0|acc |0.6307|± |0.0048|
| | |acc_norm |0.8327|± |0.0037|
|leaderboard:mmlu:_average:5 | |acc |0.5483|± |0.0356|
|leaderboard:mmlu:abstract_algebra:5 | 0|acc |0.3400|± |0.0476|
|leaderboard:mmlu:anatomy:5 | 0|acc |0.5111|± |0.0432|
|leaderboard:mmlu:astronomy:5 | 0|acc |0.5789|± |0.0402|
|leaderboard:mmlu:business_ethics:5 | 0|acc |0.5100|± |0.0502|
|leaderboard:mmlu:clinical_knowledge:5 | 0|acc |0.6000|± |0.0302|
|leaderboard:mmlu:college_biology:5 | 0|acc |0.5764|± |0.0413|
|leaderboard:mmlu:college_chemistry:5 | 0|acc |0.4100|± |0.0494|
|leaderboard:mmlu:college_computer_science:5 | 0|acc |0.4500|± |0.0500|
|leaderboard:mmlu:college_mathematics:5 | 0|acc |0.3800|± |0.0488|
|leaderboard:mmlu:college_medicine:5 | 0|acc |0.5434|± |0.0380|
|leaderboard:mmlu:college_physics:5 | 0|acc |0.2941|± |0.0453|
|leaderboard:mmlu:computer_security:5 | 0|acc |0.7000|± |0.0461|
|leaderboard:mmlu:conceptual_physics:5 | 0|acc |0.4468|± |0.0325|
|leaderboard:mmlu:econometrics:5 | 0|acc |0.2719|± |0.0419|
|leaderboard:mmlu:electrical_engineering:5 | 0|acc |0.4552|± |0.0415|
|leaderboard:mmlu:elementary_mathematics:5 | 0|acc |0.3175|± |0.0240|
|leaderboard:mmlu:formal_logic:5 | 0|acc |0.3413|± |0.0424|
|leaderboard:mmlu:global_facts:5 | 0|acc |0.3700|± |0.0485|
|leaderboard:mmlu:high_school_biology:5 | 0|acc |0.6323|± |0.0274|
|leaderboard:mmlu:high_school_chemistry:5 | 0|acc |0.4581|± |0.0351|
|leaderboard:mmlu:high_school_computer_science:5 | 0|acc |0.5400|± |0.0501|
|leaderboard:mmlu:high_school_european_history:5 | 0|acc |0.6364|± |0.0376|
|leaderboard:mmlu:high_school_geography:5 | 0|acc |0.6970|± |0.0327|
|leaderboard:mmlu:high_school_government_and_politics:5| 0|acc |0.7617|± |0.0307|
|leaderboard:mmlu:high_school_macroeconomics:5 | 0|acc |0.4974|± |0.0254|
|leaderboard:mmlu:high_school_mathematics:5 | 0|acc |0.3296|± |0.0287|
|leaderboard:mmlu:high_school_microeconomics:5 | 0|acc |0.5336|± |0.0324|
|leaderboard:mmlu:high_school_physics:5 | 0|acc |0.3709|± |0.0394|
|leaderboard:mmlu:high_school_psychology:5 | 0|acc |0.7468|± |0.0186|
|leaderboard:mmlu:high_school_statistics:5 | 0|acc |0.4074|± |0.0335|
|leaderboard:mmlu:high_school_us_history:5 | 0|acc |0.7108|± |0.0318|
|leaderboard:mmlu:high_school_world_history:5 | 0|acc |0.7046|± |0.0297|
|leaderboard:mmlu:human_aging:5 | 0|acc |0.6323|± |0.0324|
|leaderboard:mmlu:human_sexuality:5 | 0|acc |0.5878|± |0.0432|
|leaderboard:mmlu:international_law:5 | 0|acc |0.6694|± |0.0429|
|leaderboard:mmlu:jurisprudence:5 | 0|acc |0.7037|± |0.0441|
|leaderboard:mmlu:logical_fallacies:5 | 0|acc |0.6564|± |0.0373|
|leaderboard:mmlu:machine_learning:5 | 0|acc |0.3393|± |0.0449|
|leaderboard:mmlu:management:5 | 0|acc |0.7087|± |0.0450|
|leaderboard:mmlu:marketing:5 | 0|acc |0.8333|± |0.0244|
|leaderboard:mmlu:medical_genetics:5 | 0|acc |0.5400|± |0.0501|
|leaderboard:mmlu:miscellaneous:5 | 0|acc |0.7382|± |0.0157|
|leaderboard:mmlu:moral_disputes:5 | 0|acc |0.6127|± |0.0262|
|leaderboard:mmlu:moral_scenarios:5 | 0|acc |0.3788|± |0.0162|
|leaderboard:mmlu:nutrition:5 | 0|acc |0.6046|± |0.0280|
|leaderboard:mmlu:philosophy:5 | 0|acc |0.6270|± |0.0275|
|leaderboard:mmlu:prehistory:5 | 0|acc |0.6204|± |0.0270|
|leaderboard:mmlu:professional_accounting:5 | 0|acc |0.3582|± |0.0286|
|leaderboard:mmlu:professional_law:5 | 0|acc |0.3931|± |0.0125|
|leaderboard:mmlu:professional_medicine:5 | 0|acc |0.5184|± |0.0304|
|leaderboard:mmlu:professional_psychology:5 | 0|acc |0.5556|± |0.0201|
|leaderboard:mmlu:public_relations:5 | 0|acc |0.6818|± |0.0446|
|leaderboard:mmlu:security_studies:5 | 0|acc |0.6122|± |0.0312|
|leaderboard:mmlu:sociology:5 | 0|acc |0.7164|± |0.0319|
|leaderboard:mmlu:us_foreign_policy:5 | 0|acc |0.8200|± |0.0386|
|leaderboard:mmlu:virology:5 | 0|acc |0.4578|± |0.0388|
|leaderboard:mmlu:world_religions:5 | 0|acc |0.7661|± |0.0325|
|leaderboard:truthfulqa:mc:0 | 0|truthfulqa_mc1|0.2840|± |0.0158|
| | |truthfulqa_mc2|0.4423|± |0.0146|
|leaderboard:winogrande:5 | 0|acc |0.7593|± |0.0120|
## TC-Eval
| Task |Version|Metric|Value | |Stderr|
|---------------------------------------------------------------------------------|------:|------|-----:|---|-----:|
| Task |Version|Metric|Value | |Stderr|
|---------------------------|------:|------|-----:|---|-----:|
|community:tc-eval-v2:drcd:0| 0|pem |0.6848|± |0.0079|
| | |pqem |0.6799|± |0.0079|
|community:tc-eval-v2:penguin_table:0| 0|acc |0.2361|± |0.0355|
|community:tc-eval-v2:_average:5 | |acc |0.3508|± |0.0318|
|community:tc-eval-v2:tmmluplus-accounting:5 | 0|acc |0.2565|± |0.0317|
|community:tc-eval-v2:tmmluplus-administrative_law:5 | 0|acc |0.2833|± |0.0220|
|community:tc-eval-v2:tmmluplus-advance_chemistry:5 | 0|acc |0.3333|± |0.0427|
|community:tc-eval-v2:tmmluplus-agriculture:5 | 0|acc |0.1987|± |0.0326|
|community:tc-eval-v2:tmmluplus-anti_money_laundering:5 | 0|acc |0.5597|± |0.0430|
|community:tc-eval-v2:tmmluplus-auditing:5 | 0|acc |0.2836|± |0.0192|
|community:tc-eval-v2:tmmluplus-basic_medical_science:5 | 0|acc |0.2841|± |0.0146|
|community:tc-eval-v2:tmmluplus-business_management:5 | 0|acc |0.4245|± |0.0421|
|community:tc-eval-v2:tmmluplus-chinese_language_and_literature:5 | 0|acc |0.2714|± |0.0316|
|community:tc-eval-v2:tmmluplus-clinical_psychology:5 | 0|acc |0.3840|± |0.0437|
|community:tc-eval-v2:tmmluplus-computer_science:5 | 0|acc |0.4195|± |0.0375|
|community:tc-eval-v2:tmmluplus-culinary_skills:5 | 0|acc |0.4589|± |0.0292|
|community:tc-eval-v2:tmmluplus-dentistry:5 | 0|acc |0.3885|± |0.0244|
|community:tc-eval-v2:tmmluplus-economics:5 | 0|acc |0.3053|± |0.0233|
|community:tc-eval-v2:tmmluplus-education:5 | 0|acc |0.4355|± |0.0447|
|community:tc-eval-v2:tmmluplus-education_(profession_level):5 | 0|acc |0.2819|± |0.0204|
|community:tc-eval-v2:tmmluplus-educational_psychology:5 | 0|acc |0.4489|± |0.0376|
|community:tc-eval-v2:tmmluplus-engineering_math:5 | 0|acc |0.2718|± |0.0441|
|community:tc-eval-v2:tmmluplus-finance_banking:5 | 0|acc |0.3037|± |0.0397|
|community:tc-eval-v2:tmmluplus-financial_analysis:5 | 0|acc |0.2801|± |0.0230|
|community:tc-eval-v2:tmmluplus-fire_science:5 | 0|acc |0.2500|± |0.0390|
|community:tc-eval-v2:tmmluplus-general_principles_of_law:5 | 0|acc |0.3113|± |0.0452|
|community:tc-eval-v2:tmmluplus-geography_of_taiwan:5 | 0|acc |0.4492|± |0.0180|
|community:tc-eval-v2:tmmluplus-human_behavior:5 | 0|acc |0.3883|± |0.0278|
|community:tc-eval-v2:tmmluplus-insurance_studies:5 | 0|acc |0.3487|± |0.0173|
|community:tc-eval-v2:tmmluplus-introduction_to_law:5 | 0|acc |0.3165|± |0.0303|
|community:tc-eval-v2:tmmluplus-jce_humanities:5 | 0|acc |0.3444|± |0.0504|
|community:tc-eval-v2:tmmluplus-junior_chemistry:5 | 0|acc |0.3158|± |0.0322|
|community:tc-eval-v2:tmmluplus-junior_chinese_exam:5 | 0|acc |0.4171|± |0.0374|
|community:tc-eval-v2:tmmluplus-junior_math_exam:5 | 0|acc |0.2286|± |0.0318|
|community:tc-eval-v2:tmmluplus-junior_science_exam:5 | 0|acc |0.3427|± |0.0326|
|community:tc-eval-v2:tmmluplus-junior_social_studies:5 | 0|acc |0.4683|± |0.0446|
|community:tc-eval-v2:tmmluplus-logic_reasoning:5 | 0|acc |0.2734|± |0.0379|
|community:tc-eval-v2:tmmluplus-macroeconomics:5 | 0|acc |0.3187|± |0.0230|
|community:tc-eval-v2:tmmluplus-management_accounting:5 | 0|acc |0.2977|± |0.0313|
|community:tc-eval-v2:tmmluplus-marketing_management:5 | 0|acc |0.4624|± |0.0520|
|community:tc-eval-v2:tmmluplus-mechanical:5 | 0|acc |0.4831|± |0.0462|
|community:tc-eval-v2:tmmluplus-music:5 | 0|acc |0.3993|± |0.0294|
|community:tc-eval-v2:tmmluplus-national_protection:5 | 0|acc |0.4929|± |0.0345|
|community:tc-eval-v2:tmmluplus-nautical_science:5 | 0|acc |0.2777|± |0.0191|
|community:tc-eval-v2:tmmluplus-occupational_therapy_for_psychological_disorders:5| 0|acc |0.4438|± |0.0213|
|community:tc-eval-v2:tmmluplus-official_document_management:5 | 0|acc |0.3559|± |0.0322|
|community:tc-eval-v2:tmmluplus-optometry:5 | 0|acc |0.2804|± |0.0148|
|community:tc-eval-v2:tmmluplus-organic_chemistry:5 | 0|acc |0.3486|± |0.0459|
|community:tc-eval-v2:tmmluplus-pharmacology:5 | 0|acc |0.3397|± |0.0197|
|community:tc-eval-v2:tmmluplus-pharmacy:5 | 0|acc |0.2174|± |0.0209|
|community:tc-eval-v2:tmmluplus-physical_education:5 | 0|acc |0.3966|± |0.0367|
|community:tc-eval-v2:tmmluplus-physics:5 | 0|acc |0.2371|± |0.0434|
|community:tc-eval-v2:tmmluplus-politic_science:5 | 0|acc |0.3407|± |0.0150|
|community:tc-eval-v2:tmmluplus-real_estate:5 | 0|acc |0.3804|± |0.0509|
|community:tc-eval-v2:tmmluplus-secondary_physics:5 | 0|acc |0.3393|± |0.0449|
|community:tc-eval-v2:tmmluplus-statistics_and_machine_learning:5 | 0|acc |0.3438|± |0.0318|
|community:tc-eval-v2:tmmluplus-taiwanese_hokkien:5 | 0|acc |0.2636|± |0.0389|
|community:tc-eval-v2:tmmluplus-taxation:5 | 0|acc |0.2507|± |0.0224|
|community:tc-eval-v2:tmmluplus-technical:5 | 0|acc |0.4204|± |0.0247|
|community:tc-eval-v2:tmmluplus-three_principles_of_people:5 | 0|acc |0.5396|± |0.0424|
|community:tc-eval-v2:tmmluplus-trade:5 | 0|acc |0.2251|± |0.0187|
|community:tc-eval-v2:tmmluplus-traditional_chinese_medicine_clinical_medicine:5 | 0|acc |0.3094|± |0.0278|
|community:tc-eval-v2:tmmluplus-trust_practice:5 | 0|acc |0.3292|± |0.0235|
|community:tc-eval-v2:tmmluplus-ttqav2:5 | 0|acc |0.6726|± |0.0443|
|community:tc-eval-v2:tmmluplus-tve_chinese_language:5 | 0|acc |0.4161|± |0.0225|
|community:tc-eval-v2:tmmluplus-tve_design:5 | 0|acc |0.4542|± |0.0227|
|community:tc-eval-v2:tmmluplus-tve_mathematics:5 | 0|acc |0.2733|± |0.0365|
|community:tc-eval-v2:tmmluplus-tve_natural_sciences:5 | 0|acc |0.3349|± |0.0229|
|community:tc-eval-v2:tmmluplus-veterinary_pathology:5 | 0|acc |0.2544|± |0.0259|
|community:tc-eval-v2:tmmluplus-veterinary_pharmacology:5 | 0|acc |0.3259|± |0.0202| |