update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: berturk-keyword-extractor
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# berturk-keyword-extractor
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.4306
|
23 |
+
- Precision: 0.6770
|
24 |
+
- Recall: 0.6899
|
25 |
+
- Accuracy: 0.9169
|
26 |
+
- F1: 0.6834
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|
|
58 |
+
| 0.1845 | 1.0 | 1875 | 0.1964 | 0.6380 | 0.6743 | 0.9164 | 0.6557 |
|
59 |
+
| 0.1338 | 2.0 | 3750 | 0.2023 | 0.6407 | 0.7081 | 0.9169 | 0.6727 |
|
60 |
+
| 0.0978 | 3.0 | 5625 | 0.2315 | 0.6434 | 0.7309 | 0.9159 | 0.6844 |
|
61 |
+
| 0.0742 | 4.0 | 7500 | 0.2746 | 0.6592 | 0.7144 | 0.9158 | 0.6857 |
|
62 |
+
| 0.0541 | 5.0 | 9375 | 0.3290 | 0.6700 | 0.6880 | 0.9161 | 0.6789 |
|
63 |
+
| 0.0426 | 6.0 | 11250 | 0.3608 | 0.6789 | 0.6860 | 0.9171 | 0.6824 |
|
64 |
+
| 0.0332 | 7.0 | 13125 | 0.4075 | 0.6769 | 0.6924 | 0.9168 | 0.6845 |
|
65 |
+
| 0.027 | 8.0 | 15000 | 0.4306 | 0.6770 | 0.6899 | 0.9169 | 0.6834 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.19.2
|
71 |
+
- Pytorch 1.11.0+cu113
|
72 |
+
- Datasets 2.2.2
|
73 |
+
- Tokenizers 0.12.1
|