yamini0506 commited on
Commit
19a2c2b
1 Parent(s): a668a69

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: my_distilbert
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # my_distilbert
20
+
21
+ This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1515
24
+ - Precision: 0.8038
25
+ - Recall: 0.8108
26
+ - F1: 0.8073
27
+ - Accuracy: 0.9574
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 30
48
+ - eval_batch_size: 30
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 5
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 400 | 0.1692 | 0.7741 | 0.7904 | 0.7822 | 0.9516 |
59
+ | 0.2767 | 2.0 | 800 | 0.1524 | 0.7875 | 0.8010 | 0.7942 | 0.9547 |
60
+ | 0.1341 | 3.0 | 1200 | 0.1505 | 0.8068 | 0.8050 | 0.8059 | 0.9567 |
61
+ | 0.1072 | 4.0 | 1600 | 0.1498 | 0.7968 | 0.8121 | 0.8044 | 0.9568 |
62
+ | 0.0884 | 5.0 | 2000 | 0.1515 | 0.8038 | 0.8108 | 0.8073 | 0.9574 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.31.0
68
+ - Pytorch 2.3.0+cu121
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.13.3