--- license: mit datasets: - yahma/alpaca-cleaned --- This repo contains a low-rank adapter for LLaMA-13b fit on the Cleaned Alpaca dataset containing the new GPT-4 data. This version of the weights was trained with the following hyperparameters: Cleaned dataset: Snapshot April 9, 2023 Epochs: 4 Validation set size: 1500 Batch size: 128 Micro batch size: 4 Cutoff length: 512 Learning rate: 3e-4 Lora r: 16 Lora target modules: q_proj, k_proj, v_proj, o_proj That is: python finetune.py \ --base_model='decapoda-research/llama-13b-hf' \ --data_path 'yahma/alpaca-cleaned' \ --num_epochs=4 \ --cutoff_len=512 \ --output_dir='./lora-alpaca' \ --lora_target_modules='[q_proj,k_proj, v_proj, o_proj]' \ --lora_r=16 \ --val_set_size 1500 \ --micro_batch_size=4