upload adapter
Browse files- README.md +43 -0
- adapter_config.json +26 -0
- adapter_model.bin +3 -0
- xtuner_config.py +195 -0
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
pipeline_tag: conversational
|
4 |
+
base_model: internlm/internlm-20b
|
5 |
+
---
|
6 |
+
|
7 |
+
<div align="center">
|
8 |
+
<img src="https://github.com/InternLM/lmdeploy/assets/36994684/0cf8d00f-e86b-40ba-9b54-dc8f1bc6c8d8" width="600"/>
|
9 |
+
|
10 |
+
|
11 |
+
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
|
12 |
+
|
13 |
+
|
14 |
+
</div>
|
15 |
+
|
16 |
+
## Model
|
17 |
+
|
18 |
+
internlm-20b-qlora-msagent-react is fine-tuned from [InternLM-20B](https://huggingface.co/internlm/internlm-20b) with [MSAgent-Bench](https://modelscope.cn/datasets/damo/MSAgent-Bench) dataset by [XTuner](https://github.com/InternLM/xtuner).
|
19 |
+
|
20 |
+
|
21 |
+
## Quickstart
|
22 |
+
|
23 |
+
### Usage with XTuner CLI
|
24 |
+
|
25 |
+
#### Installation
|
26 |
+
|
27 |
+
```shell
|
28 |
+
pip install xtuner
|
29 |
+
```
|
30 |
+
|
31 |
+
#### Chat
|
32 |
+
|
33 |
+
```shell
|
34 |
+
xtuner chat internlm/internlm-20b --adapter xtuner/internlm-20b-qlora-msagent-react --lagent
|
35 |
+
```
|
36 |
+
|
37 |
+
#### Fine-tune
|
38 |
+
|
39 |
+
Use the following command to quickly reproduce the fine-tuning results.
|
40 |
+
|
41 |
+
```shell
|
42 |
+
NPROC_PER_NODE=8 xtuner train internlm_20b_qlora_msagent_react_e3_gpu8
|
43 |
+
```
|
adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_mapping": null,
|
3 |
+
"base_model_name_or_path": "/140/InternLM/20B/internlm-20b-base",
|
4 |
+
"bias": "none",
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"init_lora_weights": true,
|
8 |
+
"layers_pattern": null,
|
9 |
+
"layers_to_transform": null,
|
10 |
+
"lora_alpha": 16,
|
11 |
+
"lora_dropout": 0.1,
|
12 |
+
"modules_to_save": null,
|
13 |
+
"peft_type": "LORA",
|
14 |
+
"r": 64,
|
15 |
+
"revision": null,
|
16 |
+
"target_modules": [
|
17 |
+
"k_proj",
|
18 |
+
"down_proj",
|
19 |
+
"q_proj",
|
20 |
+
"up_proj",
|
21 |
+
"gate_proj",
|
22 |
+
"v_proj",
|
23 |
+
"o_proj"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM"
|
26 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad0cff2f1efe74a1bf77e6667183b40cf547b1e4ed2490ef3529ca0091324989
|
3 |
+
size 751345965
|
xtuner_config.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import torch
|
3 |
+
from bitsandbytes.optim import PagedAdamW32bit
|
4 |
+
from mmengine.dataset import DefaultSampler
|
5 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
6 |
+
LoggerHook, ParamSchedulerHook)
|
7 |
+
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR
|
8 |
+
from modelscope.msdatasets import MsDataset
|
9 |
+
from peft import LoraConfig
|
10 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
11 |
+
BitsAndBytesConfig)
|
12 |
+
|
13 |
+
from xtuner.dataset import process_ms_dataset
|
14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
15 |
+
from xtuner.dataset.map_fns import msagent_react_map_fn
|
16 |
+
from xtuner.engine import DatasetInfoHook, EvaluateChatHook
|
17 |
+
from xtuner.model import SupervisedFinetune
|
18 |
+
|
19 |
+
#######################################################################
|
20 |
+
# PART 1 Settings #
|
21 |
+
#######################################################################
|
22 |
+
# Model
|
23 |
+
pretrained_model_name_or_path = '/140/InternLM/20B/internlm-20b-base'
|
24 |
+
|
25 |
+
# Data
|
26 |
+
data_path = 'damo/MSAgent-Bench'
|
27 |
+
max_length = 2048
|
28 |
+
pack_to_max_length = False
|
29 |
+
|
30 |
+
# Scheduler & Optimizer
|
31 |
+
batch_size = 8 # per_device
|
32 |
+
accumulative_counts = 1
|
33 |
+
dataloader_num_workers = 2
|
34 |
+
max_epochs = 3
|
35 |
+
optim_type = PagedAdamW32bit
|
36 |
+
lr = 2e-4
|
37 |
+
betas = (0.9, 0.999)
|
38 |
+
weight_decay = 0
|
39 |
+
max_norm = 1 # grad clip
|
40 |
+
|
41 |
+
# Evaluate the generation performance during the training
|
42 |
+
evaluation_freq = 500
|
43 |
+
evaluation_inputs = [
|
44 |
+
('<|System|>:你是一个可以调用外部工具的助手,可以使用的工具包括:\n'
|
45 |
+
"{\'GoogleSearch\': \'一个可以从谷歌搜索结果的API。\\n"
|
46 |
+
'当你需要对于一个特定问题找到简短明了的回答时,可以使用它。\\n'
|
47 |
+
"输入应该是一个搜索查询。\\n\\n输入参数:{'query': '搜索查询'}\',"
|
48 |
+
"\'PythonInterpreter\': \"用来执行Python代码。代码必须是一个函数,\\n"
|
49 |
+
"函数名必须得是 \'solution\',代码对应你的思考过程。代码实例格式如下:\\n"
|
50 |
+
'```python\\n# import 依赖包\\nimport xxx\\ndef solution():'
|
51 |
+
'\\n # 初始化一些变量\\n variable_names_with_real_meaning = xxx'
|
52 |
+
'\\n # 步骤一\\n mid_variable = func(variable_names_with_real_meaning)'
|
53 |
+
'\\n # 步骤 x\\n mid_variable = func(mid_variable)\\n # 最后结果'
|
54 |
+
'\\n final_answer = func(mid_variable)\\n return final_answer'
|
55 |
+
"\\n```\\n输入参数:{'command': '需要执行的代码'}\"}\n"
|
56 |
+
'如果使用工具请遵循以下格式回复:\n```\n'
|
57 |
+
'Thought:思考你当前步骤需要解决什么问题,是否需要使用工具\n'
|
58 |
+
"Action:工具名称,你的工具必须从 [[\'GoogleSearch\', \'PythonInterpreter\']] 选择"
|
59 |
+
'\nAction Input:工具输入参数\n```\n工具返回按照以下格式回复:\n'
|
60 |
+
'```\nResponse:调用工具后的结果\n```'
|
61 |
+
'\n如果你已经知道了答案,或者你不需要工具,请遵循以下格式回复\n```'
|
62 |
+
'\nThought:给出最终答案的思考过程\nFinal Answer:最终答案\n```\n开始!\n'
|
63 |
+
'<|User|>:上海明天天气怎么样?\n'
|
64 |
+
'<|Bot|>:')
|
65 |
+
]
|
66 |
+
|
67 |
+
#######################################################################
|
68 |
+
# PART 2 Model & Tokenizer #
|
69 |
+
#######################################################################
|
70 |
+
tokenizer = dict(
|
71 |
+
type=AutoTokenizer.from_pretrained,
|
72 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
73 |
+
trust_remote_code=True,
|
74 |
+
padding_side='right')
|
75 |
+
|
76 |
+
model = dict(
|
77 |
+
type=SupervisedFinetune,
|
78 |
+
llm=dict(
|
79 |
+
type=AutoModelForCausalLM.from_pretrained,
|
80 |
+
pretrained_model_name_or_path=pretrained_model_name_or_path,
|
81 |
+
trust_remote_code=True,
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
quantization_config=dict(
|
84 |
+
type=BitsAndBytesConfig,
|
85 |
+
load_in_4bit=True,
|
86 |
+
load_in_8bit=False,
|
87 |
+
llm_int8_threshold=6.0,
|
88 |
+
llm_int8_has_fp16_weight=False,
|
89 |
+
bnb_4bit_compute_dtype=torch.float16,
|
90 |
+
bnb_4bit_use_double_quant=True,
|
91 |
+
bnb_4bit_quant_type='nf4')),
|
92 |
+
lora=dict(
|
93 |
+
type=LoraConfig,
|
94 |
+
r=64,
|
95 |
+
lora_alpha=16,
|
96 |
+
lora_dropout=0.1,
|
97 |
+
bias='none',
|
98 |
+
task_type='CAUSAL_LM'))
|
99 |
+
|
100 |
+
#######################################################################
|
101 |
+
# PART 3 Dataset & Dataloader #
|
102 |
+
#######################################################################
|
103 |
+
train_dataset = dict(
|
104 |
+
type=process_ms_dataset,
|
105 |
+
dataset=dict(type=MsDataset.load, dataset_name=data_path),
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
max_length=max_length,
|
108 |
+
dataset_map_fn=msagent_react_map_fn,
|
109 |
+
remove_unused_columns=True,
|
110 |
+
shuffle_before_pack=True,
|
111 |
+
pack_to_max_length=pack_to_max_length)
|
112 |
+
|
113 |
+
train_dataloader = dict(
|
114 |
+
batch_size=batch_size,
|
115 |
+
num_workers=dataloader_num_workers,
|
116 |
+
dataset=train_dataset,
|
117 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
118 |
+
collate_fn=dict(type=default_collate_fn))
|
119 |
+
|
120 |
+
#######################################################################
|
121 |
+
# PART 4 Scheduler & Optimizer #
|
122 |
+
#######################################################################
|
123 |
+
# optimizer
|
124 |
+
optim_wrapper = dict(
|
125 |
+
type=AmpOptimWrapper,
|
126 |
+
optimizer=dict(
|
127 |
+
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
128 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
|
129 |
+
accumulative_counts=accumulative_counts,
|
130 |
+
loss_scale='dynamic',
|
131 |
+
dtype='float16')
|
132 |
+
|
133 |
+
# learning policy
|
134 |
+
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
|
135 |
+
param_scheduler = dict(
|
136 |
+
type=CosineAnnealingLR,
|
137 |
+
eta_min=lr * 0.1,
|
138 |
+
by_epoch=True,
|
139 |
+
T_max=max_epochs,
|
140 |
+
convert_to_iter_based=True)
|
141 |
+
|
142 |
+
# train, val, test setting
|
143 |
+
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1)
|
144 |
+
|
145 |
+
#######################################################################
|
146 |
+
# PART 5 Runtime #
|
147 |
+
#######################################################################
|
148 |
+
# Log the dialogue periodically during the training process, optional
|
149 |
+
custom_hooks = [
|
150 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
151 |
+
dict(
|
152 |
+
type=EvaluateChatHook,
|
153 |
+
tokenizer=tokenizer,
|
154 |
+
every_n_iters=evaluation_freq,
|
155 |
+
evaluation_inputs=evaluation_inputs)
|
156 |
+
]
|
157 |
+
|
158 |
+
# configure default hooks
|
159 |
+
default_hooks = dict(
|
160 |
+
# record the time of every iteration.
|
161 |
+
timer=dict(type=IterTimerHook),
|
162 |
+
# print log every 100 iterations.
|
163 |
+
logger=dict(type=LoggerHook, interval=10),
|
164 |
+
# enable the parameter scheduler.
|
165 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
166 |
+
# save checkpoint per epoch.
|
167 |
+
checkpoint=dict(type=CheckpointHook, interval=1),
|
168 |
+
# set sampler seed in distributed evrionment.
|
169 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
170 |
+
)
|
171 |
+
|
172 |
+
# configure environment
|
173 |
+
env_cfg = dict(
|
174 |
+
# whether to enable cudnn benchmark
|
175 |
+
cudnn_benchmark=False,
|
176 |
+
# set multi process parameters
|
177 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
178 |
+
# set distributed parameters
|
179 |
+
dist_cfg=dict(backend='nccl'),
|
180 |
+
)
|
181 |
+
|
182 |
+
# set visualizer
|
183 |
+
visualizer = None
|
184 |
+
|
185 |
+
# set log level
|
186 |
+
log_level = 'INFO'
|
187 |
+
|
188 |
+
# load from which checkpoint
|
189 |
+
load_from = None
|
190 |
+
|
191 |
+
# whether to resume training from the loaded checkpoint
|
192 |
+
resume = False
|
193 |
+
|
194 |
+
# Defaults to use random seed and disable `deterministic`
|
195 |
+
randomness = dict(seed=None, deterministic=False)
|