End of training
Browse files
README.md
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
- name: tiny-llama
|
9 |
results: []
|
@@ -15,6 +18,22 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
# tiny-llama
|
16 |
|
17 |
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -30,44 +49,39 @@ More information needed
|
|
30 |
|
31 |
## Training procedure
|
32 |
|
33 |
-
|
34 |
-
The following `bitsandbytes` quantization config was used during training:
|
35 |
-
- quant_method: bitsandbytes
|
36 |
-
- _load_in_8bit: False
|
37 |
-
- _load_in_4bit: True
|
38 |
-
- llm_int8_threshold: 6.0
|
39 |
-
- llm_int8_skip_modules: None
|
40 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
41 |
-
- llm_int8_has_fp16_weight: False
|
42 |
-
- bnb_4bit_quant_type: nf4
|
43 |
-
- bnb_4bit_use_double_quant: True
|
44 |
-
- bnb_4bit_compute_dtype: bfloat16
|
45 |
-
- bnb_4bit_quant_storage: uint8
|
46 |
-
- load_in_4bit: True
|
47 |
-
- load_in_8bit: False
|
48 |
### Training hyperparameters
|
49 |
|
50 |
The following hyperparameters were used during training:
|
51 |
- learning_rate: 5e-05
|
52 |
-
- train_batch_size:
|
53 |
-
- eval_batch_size:
|
54 |
- seed: 42
|
|
|
|
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
- lr_scheduler_type: linear
|
57 |
-
-
|
58 |
- mixed_precision_training: Native AMP
|
59 |
|
60 |
### Training results
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
63 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
### Framework versions
|
68 |
|
69 |
-
-
|
70 |
-
-
|
71 |
-
- Pytorch 2.1.2
|
72 |
- Datasets 2.18.0
|
73 |
-
- Tokenizers 0.15.
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
model-index:
|
11 |
- name: tiny-llama
|
12 |
results: []
|
|
|
18 |
# tiny-llama
|
19 |
|
20 |
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.2265
|
23 |
+
- Accuracy: 0.8327
|
24 |
+
- Precision: 0.8301
|
25 |
+
- Recall: 0.8327
|
26 |
+
- Precision Macro: 0.7955
|
27 |
+
- Recall Macro: 0.7536
|
28 |
+
- Macro Fpr: 0.0148
|
29 |
+
- Weighted Fpr: 0.0141
|
30 |
+
- Weighted Specificity: 0.9765
|
31 |
+
- Macro Specificity: 0.9873
|
32 |
+
- Weighted Sensitivity: 0.8327
|
33 |
+
- Macro Sensitivity: 0.7536
|
34 |
+
- F1 Micro: 0.8327
|
35 |
+
- F1 Macro: 0.7609
|
36 |
+
- F1 Weighted: 0.8291
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
49 |
|
50 |
## Training procedure
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 2
|
57 |
+
- eval_batch_size: 2
|
58 |
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 8
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 10
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
70 |
+
| 1.0444 | 1.0 | 642 | 0.5968 | 0.8056 | 0.8050 | 0.8056 | 0.7122 | 0.6995 | 0.0175 | 0.0169 | 0.9730 | 0.9852 | 0.8056 | 0.6995 | 0.8056 | 0.6986 | 0.8014 |
|
71 |
+
| 0.4788 | 2.0 | 1284 | 0.6966 | 0.8195 | 0.8222 | 0.8195 | 0.8092 | 0.7825 | 0.0161 | 0.0155 | 0.9755 | 0.9863 | 0.8195 | 0.7825 | 0.8195 | 0.7849 | 0.8172 |
|
72 |
+
| 0.3354 | 3.0 | 1926 | 0.8046 | 0.8327 | 0.8276 | 0.8327 | 0.8058 | 0.7582 | 0.0148 | 0.0141 | 0.9758 | 0.9872 | 0.8327 | 0.7582 | 0.8327 | 0.7742 | 0.8282 |
|
73 |
+
| 0.0571 | 4.0 | 2569 | 1.1143 | 0.8265 | 0.8312 | 0.8265 | 0.7904 | 0.7763 | 0.0152 | 0.0148 | 0.9772 | 0.9869 | 0.8265 | 0.7763 | 0.8265 | 0.7690 | 0.8262 |
|
74 |
+
| 0.0187 | 5.0 | 3211 | 1.1104 | 0.8319 | 0.8316 | 0.8319 | 0.7745 | 0.7724 | 0.0149 | 0.0142 | 0.9770 | 0.9873 | 0.8319 | 0.7724 | 0.8319 | 0.7638 | 0.8303 |
|
75 |
+
| 0.0071 | 6.0 | 3853 | 1.1445 | 0.8242 | 0.8210 | 0.8242 | 0.7684 | 0.7384 | 0.0157 | 0.0150 | 0.9755 | 0.9866 | 0.8242 | 0.7384 | 0.8242 | 0.7451 | 0.8209 |
|
76 |
+
| 0.0002 | 7.0 | 4495 | 1.2032 | 0.8327 | 0.8302 | 0.8327 | 0.7985 | 0.7529 | 0.0148 | 0.0141 | 0.9765 | 0.9873 | 0.8327 | 0.7529 | 0.8327 | 0.7617 | 0.8293 |
|
77 |
+
| 0.0028 | 8.0 | 5138 | 1.1918 | 0.8257 | 0.8226 | 0.8257 | 0.7738 | 0.7493 | 0.0155 | 0.0149 | 0.9756 | 0.9868 | 0.8257 | 0.7493 | 0.8257 | 0.7552 | 0.8229 |
|
78 |
+
| 0.0 | 9.0 | 5780 | 1.2181 | 0.8311 | 0.8286 | 0.8311 | 0.7935 | 0.7522 | 0.0150 | 0.0143 | 0.9764 | 0.9872 | 0.8311 | 0.7522 | 0.8311 | 0.7592 | 0.8276 |
|
79 |
+
| 0.0018 | 10.0 | 6420 | 1.2265 | 0.8327 | 0.8301 | 0.8327 | 0.7955 | 0.7536 | 0.0148 | 0.0141 | 0.9765 | 0.9873 | 0.8327 | 0.7536 | 0.8327 | 0.7609 | 0.8291 |
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
+
- Transformers 4.35.2
|
85 |
+
- Pytorch 2.1.0+cu121
|
|
|
86 |
- Datasets 2.18.0
|
87 |
+
- Tokenizers 0.15.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 50626520
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c1c014801ba286396ea8aa68cbe5a19eebaa25c6458094a9f8633597208c334
|
3 |
size 50626520
|
runs/Apr17_08-26-15_530f60bd592e/events.out.tfevents.1713342376.530f60bd592e.249.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99ce44f5a9bd0a887f045f317678f0cd8bc7b20704d3cb9fb93ab2ba0bf80f20
|
3 |
+
size 18256
|