xshubhamx commited on
Commit
dab1b18
1 Parent(s): cf56c9d

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-9002/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
training_checkpoints/checkpoint-9002/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "gate_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "SEQ_CLS",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
training_checkpoints/checkpoint-9002/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:428e38b36df293a2621b6928c11ae33fe6ed767af688d31be1811e82745cf347
3
+ size 50626520
training_checkpoints/checkpoint-9002/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbf9fb355acfa4b6499a009c86cc6a762e0ae4e6342a500a3115c5ff8ca8cf3a
3
+ size 101430714
training_checkpoints/checkpoint-9002/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65bf3ec8f6f2113dc93599ba3b445852b3e44703555ff548000fb3dc8e8b425d
3
+ size 14244
training_checkpoints/checkpoint-9002/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ec0a65ab6faca962e82c0c465179e91180d4c6073a4de3d16c93839439717e
3
+ size 1064
training_checkpoints/checkpoint-9002/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
training_checkpoints/checkpoint-9002/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-9002/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
training_checkpoints/checkpoint-9002/tokenizer_config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "bos_token": "<s>",
29
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
30
+ "clean_up_tokenization_spaces": false,
31
+ "eos_token": "</s>",
32
+ "legacy": false,
33
+ "model_max_length": 2048,
34
+ "pad_token": "</s>",
35
+ "padding_side": "right",
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "LlamaTokenizer",
38
+ "unk_token": "<unk>",
39
+ "use_default_system_prompt": false
40
+ }
training_checkpoints/checkpoint-9002/trainer_state.json ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7610168782310045,
3
+ "best_model_checkpoint": "tiny-llama-lora-no-grad/checkpoint-1286",
4
+ "epoch": 14.0,
5
+ "eval_steps": 500,
6
+ "global_step": 9002,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.78,
13
+ "learning_rate": 4.740798341109383e-05,
14
+ "loss": 1.1276,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 1.0,
19
+ "eval_accuracy": 0.8086754453911696,
20
+ "eval_f1_macro": 0.6806109083601769,
21
+ "eval_f1_micro": 0.8086754453911695,
22
+ "eval_f1_weighted": 0.8034368965438116,
23
+ "eval_loss": 0.6704964637756348,
24
+ "eval_macro_fpr": 0.017184987145855975,
25
+ "eval_macro_sensitivity": 0.6852607939619662,
26
+ "eval_macro_specificity": 0.985525532858602,
27
+ "eval_precision": 0.8055191978891799,
28
+ "eval_precision_macro": 0.7052877886582329,
29
+ "eval_recall": 0.8086754453911696,
30
+ "eval_recall_macro": 0.6852607939619662,
31
+ "eval_runtime": 225.0756,
32
+ "eval_samples_per_second": 5.736,
33
+ "eval_steps_per_second": 0.72,
34
+ "eval_weighted_fpr": 0.016618448496265894,
35
+ "eval_weighted_sensitivity": 0.8086754453911696,
36
+ "eval_weighted_specificity": 0.9742075474878604,
37
+ "step": 643
38
+ },
39
+ {
40
+ "epoch": 1.56,
41
+ "learning_rate": 4.481596682218767e-05,
42
+ "loss": 0.503,
43
+ "step": 1000
44
+ },
45
+ {
46
+ "epoch": 2.0,
47
+ "eval_accuracy": 0.8164213787761425,
48
+ "eval_f1_macro": 0.7610168782310045,
49
+ "eval_f1_micro": 0.8164213787761425,
50
+ "eval_f1_weighted": 0.8154049040588042,
51
+ "eval_loss": 0.7205804586410522,
52
+ "eval_macro_fpr": 0.01631511703260385,
53
+ "eval_macro_sensitivity": 0.7641451876525827,
54
+ "eval_macro_specificity": 0.9862465922523334,
55
+ "eval_precision": 0.8231306684180838,
56
+ "eval_precision_macro": 0.7746203157296797,
57
+ "eval_recall": 0.8164213787761425,
58
+ "eval_recall_macro": 0.7641451876525827,
59
+ "eval_runtime": 230.0342,
60
+ "eval_samples_per_second": 5.612,
61
+ "eval_steps_per_second": 0.704,
62
+ "eval_weighted_fpr": 0.01580737677582872,
63
+ "eval_weighted_sensitivity": 0.8164213787761425,
64
+ "eval_weighted_specificity": 0.977277505008855,
65
+ "step": 1286
66
+ },
67
+ {
68
+ "epoch": 2.33,
69
+ "learning_rate": 4.22239502332815e-05,
70
+ "loss": 0.3617,
71
+ "step": 1500
72
+ },
73
+ {
74
+ "epoch": 3.0,
75
+ "eval_accuracy": 0.8164213787761425,
76
+ "eval_f1_macro": 0.7242203392667825,
77
+ "eval_f1_micro": 0.8164213787761425,
78
+ "eval_f1_weighted": 0.8123838748630571,
79
+ "eval_loss": 0.8818831443786621,
80
+ "eval_macro_fpr": 0.01641791191580845,
81
+ "eval_macro_sensitivity": 0.7170126291644698,
82
+ "eval_macro_specificity": 0.9861058068231509,
83
+ "eval_precision": 0.8137334709054306,
84
+ "eval_precision_macro": 0.7499445969412153,
85
+ "eval_recall": 0.8164213787761425,
86
+ "eval_recall_macro": 0.7170126291644698,
87
+ "eval_runtime": 231.2189,
88
+ "eval_samples_per_second": 5.583,
89
+ "eval_steps_per_second": 0.701,
90
+ "eval_weighted_fpr": 0.01580737677582872,
91
+ "eval_weighted_sensitivity": 0.8164213787761425,
92
+ "eval_weighted_specificity": 0.975165723571122,
93
+ "step": 1929
94
+ },
95
+ {
96
+ "epoch": 3.11,
97
+ "learning_rate": 3.963193364437533e-05,
98
+ "loss": 0.2293,
99
+ "step": 2000
100
+ },
101
+ {
102
+ "epoch": 3.89,
103
+ "learning_rate": 3.7039917055469156e-05,
104
+ "loss": 0.0618,
105
+ "step": 2500
106
+ },
107
+ {
108
+ "epoch": 4.0,
109
+ "eval_accuracy": 0.8086754453911696,
110
+ "eval_f1_macro": 0.740118070206755,
111
+ "eval_f1_micro": 0.8086754453911695,
112
+ "eval_f1_weighted": 0.8074036218868607,
113
+ "eval_loss": 1.1433583498001099,
114
+ "eval_macro_fpr": 0.017252929817186225,
115
+ "eval_macro_sensitivity": 0.729298059210823,
116
+ "eval_macro_specificity": 0.9854230690678942,
117
+ "eval_precision": 0.8106816369031802,
118
+ "eval_precision_macro": 0.7673360060599891,
119
+ "eval_recall": 0.8086754453911696,
120
+ "eval_recall_macro": 0.729298059210823,
121
+ "eval_runtime": 230.3503,
122
+ "eval_samples_per_second": 5.605,
123
+ "eval_steps_per_second": 0.703,
124
+ "eval_weighted_fpr": 0.016618448496265894,
125
+ "eval_weighted_sensitivity": 0.8086754453911696,
126
+ "eval_weighted_specificity": 0.972670590627246,
127
+ "step": 2572
128
+ },
129
+ {
130
+ "epoch": 4.67,
131
+ "learning_rate": 3.4447900466562985e-05,
132
+ "loss": 0.0243,
133
+ "step": 3000
134
+ },
135
+ {
136
+ "epoch": 5.0,
137
+ "eval_accuracy": 0.8109992254066615,
138
+ "eval_f1_macro": 0.7228040111858681,
139
+ "eval_f1_micro": 0.8109992254066615,
140
+ "eval_f1_weighted": 0.8085738170522284,
141
+ "eval_loss": 1.2966285943984985,
142
+ "eval_macro_fpr": 0.017057469386588052,
143
+ "eval_macro_sensitivity": 0.7164376871359707,
144
+ "eval_macro_specificity": 0.9857584427734511,
145
+ "eval_precision": 0.8111777551016551,
146
+ "eval_precision_macro": 0.748883500821637,
147
+ "eval_recall": 0.8109992254066615,
148
+ "eval_recall_macro": 0.7164376871359707,
149
+ "eval_runtime": 230.5087,
150
+ "eval_samples_per_second": 5.601,
151
+ "eval_steps_per_second": 0.703,
152
+ "eval_weighted_fpr": 0.016373641121997046,
153
+ "eval_weighted_sensitivity": 0.8109992254066615,
154
+ "eval_weighted_specificity": 0.9753774161951063,
155
+ "step": 3215
156
+ },
157
+ {
158
+ "epoch": 5.44,
159
+ "learning_rate": 3.1855883877656815e-05,
160
+ "loss": 0.0121,
161
+ "step": 3500
162
+ },
163
+ {
164
+ "epoch": 6.0,
165
+ "eval_accuracy": 0.8195197521301317,
166
+ "eval_f1_macro": 0.714317091817089,
167
+ "eval_f1_micro": 0.8195197521301317,
168
+ "eval_f1_weighted": 0.8169833922452127,
169
+ "eval_loss": 1.2964715957641602,
170
+ "eval_macro_fpr": 0.01621298630582096,
171
+ "eval_macro_sensitivity": 0.7076912641211482,
172
+ "eval_macro_specificity": 0.9863159800251362,
173
+ "eval_precision": 0.8174973720287305,
174
+ "eval_precision_macro": 0.7311701256978252,
175
+ "eval_recall": 0.8195197521301317,
176
+ "eval_recall_macro": 0.7076912641211482,
177
+ "eval_runtime": 230.8554,
178
+ "eval_samples_per_second": 5.592,
179
+ "eval_steps_per_second": 0.702,
180
+ "eval_weighted_fpr": 0.01548687271518777,
181
+ "eval_weighted_sensitivity": 0.8195197521301317,
182
+ "eval_weighted_specificity": 0.9752199482469127,
183
+ "step": 3858
184
+ },
185
+ {
186
+ "epoch": 6.22,
187
+ "learning_rate": 2.926386728875065e-05,
188
+ "loss": 0.003,
189
+ "step": 4000
190
+ },
191
+ {
192
+ "epoch": 7.0,
193
+ "learning_rate": 2.667185069984448e-05,
194
+ "loss": 0.0021,
195
+ "step": 4500
196
+ },
197
+ {
198
+ "epoch": 7.0,
199
+ "eval_accuracy": 0.8187451587916343,
200
+ "eval_f1_macro": 0.7165425493481726,
201
+ "eval_f1_micro": 0.8187451587916342,
202
+ "eval_f1_weighted": 0.8152226658384369,
203
+ "eval_loss": 1.3710469007492065,
204
+ "eval_macro_fpr": 0.01622856042065577,
205
+ "eval_macro_sensitivity": 0.7112104764224284,
206
+ "eval_macro_specificity": 0.9862882906960665,
207
+ "eval_precision": 0.8168122443238953,
208
+ "eval_precision_macro": 0.7519067055100973,
209
+ "eval_recall": 0.8187451587916343,
210
+ "eval_recall_macro": 0.7112104764224284,
211
+ "eval_runtime": 231.4872,
212
+ "eval_samples_per_second": 5.577,
213
+ "eval_steps_per_second": 0.7,
214
+ "eval_weighted_fpr": 0.015566790846194785,
215
+ "eval_weighted_sensitivity": 0.8187451587916343,
216
+ "eval_weighted_specificity": 0.975579201649363,
217
+ "step": 4501
218
+ },
219
+ {
220
+ "epoch": 7.78,
221
+ "learning_rate": 2.4079834110938313e-05,
222
+ "loss": 0.003,
223
+ "step": 5000
224
+ },
225
+ {
226
+ "epoch": 8.0,
227
+ "eval_accuracy": 0.820294345468629,
228
+ "eval_f1_macro": 0.7158880722332298,
229
+ "eval_f1_micro": 0.8202943454686291,
230
+ "eval_f1_weighted": 0.8173423019940304,
231
+ "eval_loss": 1.3348430395126343,
232
+ "eval_macro_fpr": 0.0161589741015493,
233
+ "eval_macro_sensitivity": 0.707324528826163,
234
+ "eval_macro_specificity": 0.9863452414325693,
235
+ "eval_precision": 0.817084329636889,
236
+ "eval_precision_macro": 0.7416566900266442,
237
+ "eval_recall": 0.820294345468629,
238
+ "eval_recall_macro": 0.707324528826163,
239
+ "eval_runtime": 231.7727,
240
+ "eval_samples_per_second": 5.57,
241
+ "eval_steps_per_second": 0.699,
242
+ "eval_weighted_fpr": 0.015407092575375215,
243
+ "eval_weighted_sensitivity": 0.820294345468629,
244
+ "eval_weighted_specificity": 0.97488427601991,
245
+ "step": 5144
246
+ },
247
+ {
248
+ "epoch": 8.55,
249
+ "learning_rate": 2.1487817522032143e-05,
250
+ "loss": 0.0023,
251
+ "step": 5500
252
+ },
253
+ {
254
+ "epoch": 9.0,
255
+ "eval_accuracy": 0.8187451587916343,
256
+ "eval_f1_macro": 0.7120780493516332,
257
+ "eval_f1_micro": 0.8187451587916342,
258
+ "eval_f1_weighted": 0.8141492515633661,
259
+ "eval_loss": 1.4038118124008179,
260
+ "eval_macro_fpr": 0.01630132436230029,
261
+ "eval_macro_sensitivity": 0.7030162850725371,
262
+ "eval_macro_specificity": 0.9861967008390129,
263
+ "eval_precision": 0.8149366971498379,
264
+ "eval_precision_macro": 0.7548435802187925,
265
+ "eval_recall": 0.8187451587916343,
266
+ "eval_recall_macro": 0.7030162850725371,
267
+ "eval_runtime": 231.6565,
268
+ "eval_samples_per_second": 5.573,
269
+ "eval_steps_per_second": 0.699,
270
+ "eval_weighted_fpr": 0.015566790846194785,
271
+ "eval_weighted_sensitivity": 0.8187451587916343,
272
+ "eval_weighted_specificity": 0.9742053537935573,
273
+ "step": 5787
274
+ },
275
+ {
276
+ "epoch": 9.33,
277
+ "learning_rate": 1.8895800933125972e-05,
278
+ "loss": 0.0033,
279
+ "step": 6000
280
+ },
281
+ {
282
+ "epoch": 10.0,
283
+ "eval_accuracy": 0.820294345468629,
284
+ "eval_f1_macro": 0.7152055882276366,
285
+ "eval_f1_micro": 0.8202943454686291,
286
+ "eval_f1_weighted": 0.8163162253560097,
287
+ "eval_loss": 1.4021339416503906,
288
+ "eval_macro_fpr": 0.01619493341866027,
289
+ "eval_macro_sensitivity": 0.7110217324819302,
290
+ "eval_macro_specificity": 0.9863270327277461,
291
+ "eval_precision": 0.8151084284815174,
292
+ "eval_precision_macro": 0.7330251485200666,
293
+ "eval_recall": 0.820294345468629,
294
+ "eval_recall_macro": 0.7110217324819302,
295
+ "eval_runtime": 231.6588,
296
+ "eval_samples_per_second": 5.573,
297
+ "eval_steps_per_second": 0.699,
298
+ "eval_weighted_fpr": 0.015407092575375215,
299
+ "eval_weighted_sensitivity": 0.820294345468629,
300
+ "eval_weighted_specificity": 0.9746111454475601,
301
+ "step": 6430
302
+ },
303
+ {
304
+ "epoch": 10.11,
305
+ "learning_rate": 1.6303784344219805e-05,
306
+ "loss": 0.0014,
307
+ "step": 6500
308
+ },
309
+ {
310
+ "epoch": 10.89,
311
+ "learning_rate": 1.3711767755313634e-05,
312
+ "loss": 0.0017,
313
+ "step": 7000
314
+ },
315
+ {
316
+ "epoch": 11.0,
317
+ "eval_accuracy": 0.8210689388071263,
318
+ "eval_f1_macro": 0.7155389432371102,
319
+ "eval_f1_micro": 0.8210689388071263,
320
+ "eval_f1_weighted": 0.8179308294442692,
321
+ "eval_loss": 1.400085210800171,
322
+ "eval_macro_fpr": 0.01600471707010785,
323
+ "eval_macro_sensitivity": 0.7110426238860363,
324
+ "eval_macro_specificity": 0.9864226161631717,
325
+ "eval_precision": 0.8177607468470947,
326
+ "eval_precision_macro": 0.736115805426312,
327
+ "eval_recall": 0.8210689388071263,
328
+ "eval_recall_macro": 0.7110426238860363,
329
+ "eval_runtime": 233.5847,
330
+ "eval_samples_per_second": 5.527,
331
+ "eval_steps_per_second": 0.694,
332
+ "eval_weighted_fpr": 0.015327450069670227,
333
+ "eval_weighted_sensitivity": 0.8210689388071263,
334
+ "eval_weighted_specificity": 0.975270303640449,
335
+ "step": 7073
336
+ },
337
+ {
338
+ "epoch": 11.66,
339
+ "learning_rate": 1.1119751166407467e-05,
340
+ "loss": 0.0023,
341
+ "step": 7500
342
+ },
343
+ {
344
+ "epoch": 12.0,
345
+ "eval_accuracy": 0.8226181254841208,
346
+ "eval_f1_macro": 0.7177170991829454,
347
+ "eval_f1_micro": 0.8226181254841208,
348
+ "eval_f1_weighted": 0.8194785693417274,
349
+ "eval_loss": 1.409959316253662,
350
+ "eval_macro_fpr": 0.015849560370098895,
351
+ "eval_macro_sensitivity": 0.7127452360706031,
352
+ "eval_macro_specificity": 0.9865319770574401,
353
+ "eval_precision": 0.8189327832635585,
354
+ "eval_precision_macro": 0.7386070644276358,
355
+ "eval_recall": 0.8226181254841208,
356
+ "eval_recall_macro": 0.7127452360706031,
357
+ "eval_runtime": 231.4046,
358
+ "eval_samples_per_second": 5.579,
359
+ "eval_steps_per_second": 0.7,
360
+ "eval_weighted_fpr": 0.01516857653838511,
361
+ "eval_weighted_sensitivity": 0.8226181254841208,
362
+ "eval_weighted_specificity": 0.9753615303774794,
363
+ "step": 7716
364
+ },
365
+ {
366
+ "epoch": 12.44,
367
+ "learning_rate": 8.527734577501296e-06,
368
+ "loss": 0.0034,
369
+ "step": 8000
370
+ },
371
+ {
372
+ "epoch": 13.0,
373
+ "eval_accuracy": 0.8233927188226181,
374
+ "eval_f1_macro": 0.7171044212306599,
375
+ "eval_f1_micro": 0.8233927188226181,
376
+ "eval_f1_weighted": 0.8200624957363772,
377
+ "eval_loss": 1.4272679090499878,
378
+ "eval_macro_fpr": 0.015762565967900863,
379
+ "eval_macro_sensitivity": 0.7114968838472958,
380
+ "eval_macro_specificity": 0.9866030749234862,
381
+ "eval_precision": 0.8192001454232278,
382
+ "eval_precision_macro": 0.7384958049410225,
383
+ "eval_recall": 0.8233927188226181,
384
+ "eval_recall_macro": 0.7114968838472958,
385
+ "eval_runtime": 231.5396,
386
+ "eval_samples_per_second": 5.576,
387
+ "eval_steps_per_second": 0.7,
388
+ "eval_weighted_fpr": 0.015089344804765056,
389
+ "eval_weighted_sensitivity": 0.8233927188226181,
390
+ "eval_weighted_specificity": 0.9756534050296731,
391
+ "step": 8359
392
+ },
393
+ {
394
+ "epoch": 13.22,
395
+ "learning_rate": 5.935717988595127e-06,
396
+ "loss": 0.0,
397
+ "step": 8500
398
+ },
399
+ {
400
+ "epoch": 14.0,
401
+ "learning_rate": 3.343701399688958e-06,
402
+ "loss": 0.0016,
403
+ "step": 9000
404
+ },
405
+ {
406
+ "epoch": 14.0,
407
+ "eval_accuracy": 0.8226181254841208,
408
+ "eval_f1_macro": 0.7167677155595502,
409
+ "eval_f1_micro": 0.8226181254841208,
410
+ "eval_f1_weighted": 0.819203323139996,
411
+ "eval_loss": 1.4322476387023926,
412
+ "eval_macro_fpr": 0.015856078619640734,
413
+ "eval_macro_sensitivity": 0.7111285597220655,
414
+ "eval_macro_specificity": 0.9865346286538078,
415
+ "eval_precision": 0.8182791715655534,
416
+ "eval_precision_macro": 0.7381978217210116,
417
+ "eval_recall": 0.8226181254841208,
418
+ "eval_recall_macro": 0.7111285597220655,
419
+ "eval_runtime": 230.5492,
420
+ "eval_samples_per_second": 5.6,
421
+ "eval_steps_per_second": 0.703,
422
+ "eval_weighted_fpr": 0.01516857653838511,
423
+ "eval_weighted_sensitivity": 0.8226181254841208,
424
+ "eval_weighted_specificity": 0.975401304322996,
425
+ "step": 9002
426
+ }
427
+ ],
428
+ "logging_steps": 500,
429
+ "max_steps": 9645,
430
+ "num_train_epochs": 15,
431
+ "save_steps": 500,
432
+ "total_flos": 2.169209851383644e+17,
433
+ "trial_name": null,
434
+ "trial_params": null
435
+ }
training_checkpoints/checkpoint-9002/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ff705a2df1e2a4af4561f18885963eb567ed3764da87225d80ca06855551f2c
3
+ size 4600