--- library_name: xpmir --- # SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733 ## Using the model) The model can be loaded with [experimaestro IR](https://experimaestro-ir.readthedocs.io/en/latest/) ```py from xpmir.models import AutoModel # Model that can be re-used in experiments model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE") # Use this if you want to actually use the model model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True) model.initialize() model.rsv("walgreens store sales average", "The average Walgreens salary ranges...") ``` ## Results | Dataset | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20 | |----| ---|------|------|------|------|------|------| | trec2019 | 0.5102 | 0.7360 | 0.9612 | 0.9612 | 0.7407 | 0.7300 | 0.7097 | | msmarco_dev | 0.3623 | 0.0384 | 0.3673 | 0.3560 | 0.4870 | 0.4207 | 0.4451 |