--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-DIALOCONAN-WIKI-CLS results: [] --- # distilbert-base-uncased-DIALOCONAN-WIKI-CLS This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4006 - Precision: 0.6306 - Recall: 0.6327 - F1: 0.6316 - Accuracy: 0.9460 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3444 | 1.0 | 2500 | 0.3613 | 0.6877 | 0.6910 | 0.6884 | 0.9171 | | 0.2104 | 2.0 | 5000 | 0.3773 | 0.7006 | 0.7035 | 0.7017 | 0.9344 | | 0.1061 | 3.0 | 7500 | 0.3585 | 0.7054 | 0.7074 | 0.7063 | 0.9404 | | 0.0669 | 4.0 | 10000 | 0.4002 | 0.6291 | 0.6309 | 0.6299 | 0.9434 | | 0.0327 | 5.0 | 12500 | 0.4006 | 0.6306 | 0.6327 | 0.6316 | 0.9460 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1