File size: 2,263 Bytes
7eae3bb
ca2e14b
 
 
 
 
 
 
 
 
 
7eae3bb
ca2e14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---

library_name: transformers
license: other
base_model: microsoft/Phi-3.5-mini-instruct
tags:
- llama-factory
- freeze
- generated_from_trainer
model-index:
- name: microsoft/Phi-3.5-mini-instruct
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my DC sever
https://discord.gg/yaTfFF6Ut2

# 我正在計畫微調64K指令模型,請幫助我進行計畫
Support me here if you're interested:
# Ko-fi: https://ko-fi.com/ogodwin10

# Phi-3.5-mini-instruct-24-9-29

This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the lmsys_chat dataset.

It achieves the following results on the evaluation set:

- Loss: 1.3194



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: reduce_lr_on_plateau
- training_steps: 1000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss |

|:-------------:|:------:|:----:|:---------------:|

| 1.428         | 0.0160 | 100  | 1.3194          |

| 1.2653        | 0.0320 | 200  | 1.3194          |

| 1.3084        | 0.0480 | 300  | 1.3194          |

| 1.3234        | 0.0641 | 400  | 1.3194          |

| 1.4091        | 0.0801 | 500  | 1.3194          |

| 1.2878        | 0.0961 | 600  | 1.3194          |

| 1.2933        | 0.1121 | 700  | 1.3194          |

| 1.3246        | 0.1281 | 800  | 1.3194          |

| 1.2911        | 0.1441 | 900  | 1.3194          |

| 1.4227        | 0.1602 | 1000 | 1.3194          |





### Framework versions



- Transformers 4.45.0

- Pytorch 2.4.0+cu124

- Datasets 2.19.1

- Tokenizers 0.20.0