File size: 2,164 Bytes
675b526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852c504
 
 
 
 
4defb10
852c504
675b526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: llama3.2
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- llama-factory
- freeze
- generated_from_trainer
model-index:
- name: Llama-3.2-3B-Instruct-24-9-29
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my DC sever
https://discord.gg/yaTfFF6Ut2

# 我正在計畫微調64K指令模型,請幫助我進行計畫
Support me here if you're interested:
# Ko-fi: https://ko-fi.com/ogodwin10

# Llama-3.2-3B-Instruct-24-9-29

This model is a fine-tuned version of [unsloth/Llama-3.2-3B-Instruct](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) on the lmsys_chat dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1817

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.256         | 0.0160 | 100  | 1.1817          |
| 1.236         | 0.0320 | 200  | 1.1817          |
| 1.2212        | 0.0480 | 300  | 1.1817          |
| 1.1804        | 0.0641 | 400  | 1.1817          |
| 1.2801        | 0.0801 | 500  | 1.1817          |
| 1.2232        | 0.0961 | 600  | 1.1817          |
| 1.2433        | 0.1121 | 700  | 1.1817          |
| 1.2231        | 0.1281 | 800  | 1.1817          |
| 1.2272        | 0.1441 | 900  | 1.1817          |
| 1.2843        | 0.1602 | 1000 | 1.1817          |


### Framework versions

- Transformers 4.45.0
- Pytorch 2.4.0+cu124
- Datasets 2.19.1
- Tokenizers 0.20.0