--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: train split: train args: train metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Accuracy: 0.86 - Loss: 0.7644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.1622 | 1.0 | 113 | 0.36 | 2.0289 | | 1.6015 | 2.0 | 226 | 0.59 | 1.4290 | | 1.1929 | 3.0 | 339 | 0.7 | 1.1003 | | 0.9015 | 4.0 | 452 | 0.76 | 0.8761 | | 0.7038 | 5.0 | 565 | 0.76 | 0.7516 | | 0.3261 | 6.0 | 678 | 0.77 | 0.7753 | | 0.5327 | 7.0 | 791 | 0.79 | 0.6131 | | 0.1239 | 8.0 | 904 | 0.8 | 0.6283 | | 0.1193 | 9.0 | 1017 | 0.85 | 0.5770 | | 0.1405 | 10.0 | 1130 | 0.8 | 0.7979 | | 0.0113 | 11.0 | 1243 | 0.81 | 0.7830 | | 0.1392 | 12.0 | 1356 | 0.85 | 0.7350 | | 0.0065 | 13.0 | 1469 | 0.82 | 0.7935 | | 0.0049 | 14.0 | 1582 | 0.84 | 0.8323 | | 0.0041 | 15.0 | 1695 | 0.86 | 0.7644 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.0 - Tokenizers 0.13.3