--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.875 --- # emotion-classification This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8208 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cf23277c497672354225cd/jrX1Xnbrww6EFXh8fo8tI.png) KeyboardInterrupt: because full disk, continue from checkpoint 270 / from epoch 54 checkpoint = "C:\Users\willi\Documents\MachineLearning_Collab\model\emotion-classification\checkpoint-270" ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cf23277c497672354225cd/EeFYcfAfjX07fCuJWBWZo.png) | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:----------------:|:--------:| | 0.8456 | 55 | 0.8537 | 0.8562 | | 0.7982 | 56 | 0.8021 | 0.8875 | | 0.8028 | 57 | 0.8028 | 0.8438 | The result of evaluation from trainer.evaluate(eval_dataset=emotion["test"]): {'eval_loss': 0.8208037614822388, 'eval_accuracy': 0.875, 'eval_runtime': 5.3137, 'eval_samples_per_second': 30.111, 'eval_steps_per_second': 0.941, 'epoch': 3.0} ### Framework versions - Transformers 4.41.2 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1