williamdeli
commited on
Commit
•
9ca86b3
1
Parent(s):
523610e
Update README.md
Browse files
README.md
CHANGED
@@ -34,8 +34,23 @@ It achieves the following results on the evaluation set:
|
|
34 |
- Accuracy: 0.875
|
35 |
|
36 |
## Model description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
More information needed
|
39 |
|
40 |
## Intended uses & limitations
|
41 |
|
@@ -43,12 +58,11 @@ More information needed
|
|
43 |
|
44 |
## Training and evaluation data
|
45 |
|
46 |
-
{'eval_loss': 0.8208037614822388, 'eval_accuracy': 0.875, 'eval_runtime': 5.3137, 'eval_samples_per_second': 30.111, 'eval_steps_per_second': 0.941, 'epoch': 3.0}
|
47 |
-
|
48 |
More information needed
|
49 |
|
50 |
## Training procedure
|
51 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
@@ -65,12 +79,73 @@ The following hyperparameters were used during training:
|
|
65 |
|
66 |
### Training results
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
| 0.8456 | 1.0 | 5 | 0.8537 | 0.8562 |
|
71 |
| 0.7982 | 2.0 | 10 | 0.8021 | 0.8875 |
|
72 |
| 0.8028 | 3.0 | 15 | 0.8028 | 0.8438 |
|
73 |
|
|
|
|
|
74 |
|
75 |
### Framework versions
|
76 |
|
|
|
34 |
- Accuracy: 0.875
|
35 |
|
36 |
## Model description
|
37 |
+
Fine Tuning from google/vit-base-patch16-224-in21k and dataset from FastJobs/Visual_Emotional_Analysis
|
38 |
+
|
39 |
+
Preprocessing :
|
40 |
+
|
41 |
+
Resize: Resizes the image to 224x224 pixels using bilinear interpolation. This ensures all images have consistent dimensions when fed into the model.
|
42 |
+
|
43 |
+
RandomHorizontalFlip: Randomly flips the image horizontally with a 50% probability. This helps the model learn to recognize objects from different horizontal orientations.
|
44 |
+
|
45 |
+
RandomVerticalFlip: Randomly flips the image vertically with a 50% probability. This helps the model learn to recognize objects from different vertical orientations.
|
46 |
+
|
47 |
+
ColorJitter: Randomly alters the brightness, contrast, saturation, and hue of the image. This simulates variations in lighting and color conditions, allowing the model to learn from a wider range of color variations.
|
48 |
+
|
49 |
+
ToTensor: Converts the image into a PyTorch tensor, which is the format required for processing images in deep learning frameworks like PyTorch.
|
50 |
+
|
51 |
+
Normalize: Normalizes each pixel of the image by subtracting the mean (0.5) and dividing by the standard deviation (0.5). This normalization helps stabilize training and improve model convergence.
|
52 |
+
|
53 |
|
|
|
54 |
|
55 |
## Intended uses & limitations
|
56 |
|
|
|
58 |
|
59 |
## Training and evaluation data
|
60 |
|
|
|
|
|
61 |
More information needed
|
62 |
|
63 |
## Training procedure
|
64 |
|
65 |
+
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
|
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
+
Epoch Training Loss Validation Loss Accuracy
|
83 |
+
1 2.084400 2.090225 0.137500
|
84 |
+
2 2.089700 2.086973 0.118750
|
85 |
+
3 2.079400 2.086899 0.100000
|
86 |
+
4 2.098200 2.086151 0.125000
|
87 |
+
5 2.093100 2.082829 0.137500
|
88 |
+
6 2.083900 2.081236 0.137500
|
89 |
+
7 2.082900 2.086800 0.081250
|
90 |
+
8 2.060600 2.077514 0.162500
|
91 |
+
9 2.085300 2.068546 0.143750
|
92 |
+
10 2.071300 2.076601 0.131250
|
93 |
+
11 2.059300 2.063258 0.175000
|
94 |
+
12 2.054800 2.067919 0.125000
|
95 |
+
13 2.063700 2.059906 0.150000
|
96 |
+
14 2.044800 2.059610 0.206250
|
97 |
+
15 2.042200 2.055763 0.181250
|
98 |
+
16 2.029200 2.058503 0.193750
|
99 |
+
17 2.033300 2.042262 0.206250
|
100 |
+
18 2.003300 2.043147 0.206250
|
101 |
+
19 1.987800 2.035327 0.218750
|
102 |
+
20 1.987600 2.015316 0.206250
|
103 |
+
21 1.991800 2.010191 0.231250
|
104 |
+
22 1.973300 1.999294 0.250000
|
105 |
+
23 1.950500 1.980282 0.331250
|
106 |
+
24 1.930900 1.963615 0.281250
|
107 |
+
25 1.887600 1.942629 0.325000
|
108 |
+
26 1.870200 1.901906 0.381250
|
109 |
+
27 1.836300 1.867780 0.387500
|
110 |
+
28 1.804300 1.846487 0.393750
|
111 |
+
29 1.752700 1.806786 0.431250
|
112 |
+
30 1.681600 1.756060 0.437500
|
113 |
+
31 1.660400 1.708304 0.475000
|
114 |
+
32 1.624700 1.659365 0.493750
|
115 |
+
33 1.567100 1.620911 0.481250
|
116 |
+
34 1.503100 1.585212 0.506250
|
117 |
+
35 1.482700 1.546996 0.518750
|
118 |
+
36 1.468600 1.519542 0.562500
|
119 |
+
37 1.423800 1.493005 0.575000
|
120 |
+
38 1.393500 1.469010 0.531250
|
121 |
+
39 1.297800 1.446551 0.550000
|
122 |
+
40 1.322000 1.407961 0.556250
|
123 |
+
41 1.322300 1.385930 0.562500
|
124 |
+
42 1.254800 1.374024 0.562500
|
125 |
+
43 1.183200 1.338247 0.531250
|
126 |
+
44 1.173300 1.316369 0.575000
|
127 |
+
45 1.100100 1.283046 0.593750
|
128 |
+
46 1.069300 1.298898 0.575000
|
129 |
+
47 1.045900 1.297686 0.587500
|
130 |
+
48 1.032000 1.269446 0.600000
|
131 |
+
49 0.962800 1.252569 0.606250
|
132 |
+
50 0.929700 1.248749 0.587500
|
133 |
+
51 0.938900 1.213704 0.618750
|
134 |
+
52 0.887200 1.219889 0.581250
|
135 |
+
53 0.797000 1.228908 0.575000
|
136 |
+
54 0.736100 1.185892 0.631250
|
137 |
+
|
138 |
+
KeyboardInterrupt because disk full: --> continue from checkpoint 270 / epoch 54
|
139 |
+
|
140 |
+
|
141 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
142 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
143 |
| 0.8456 | 1.0 | 5 | 0.8537 | 0.8562 |
|
144 |
| 0.7982 | 2.0 | 10 | 0.8021 | 0.8875 |
|
145 |
| 0.8028 | 3.0 | 15 | 0.8028 | 0.8438 |
|
146 |
|
147 |
+
Result :
|
148 |
+
{'eval_loss': 0.8208037614822388, 'eval_accuracy': 0.875, 'eval_runtime': 5.3137, 'eval_samples_per_second': 30.111, 'eval_steps_per_second': 0.941, 'epoch': 3.0}
|
149 |
|
150 |
### Framework versions
|
151 |
|