--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english datasets: - wikd/customer_data metrics: - accuracy widget: - text: I'm very satisfied with my purchase - text: The delivery was very quick! - text: The product is out of stock - text: The return process was easy - text: I changed my mind and want to cancel my order pipeline_tag: text-classification inference: true model-index: - name: SetFit with distilbert/distilbert-base-uncased-finetuned-sst-2-english results: - task: type: text-classification name: Text Classification dataset: name: wikd/customer_data type: wikd/customer_data split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with distilbert/distilbert-base-uncased-finetuned-sst-2-english This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [wikd/customer_data](https://huggingface.co/datasets/wikd/customer_data) dataset that can be used for Text Classification. This SetFit model uses [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [wikd/customer_data](https://huggingface.co/datasets/wikd/customer_data) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 |