--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: label_4_Test results: [] --- # label_4_Test This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0461 - Accuracy: 0.9899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 99 | 0.0693 | 0.9798 | | No log | 2.0 | 198 | 0.0522 | 0.9798 | | No log | 3.0 | 297 | 0.0581 | 0.9697 | | No log | 4.0 | 396 | 0.0394 | 0.9899 | | No log | 5.0 | 495 | 0.0367 | 0.9899 | | 0.1504 | 6.0 | 594 | 0.0506 | 0.9899 | | 0.1504 | 7.0 | 693 | 0.0402 | 0.9899 | | 0.1504 | 8.0 | 792 | 0.0476 | 0.9899 | | 0.1504 | 9.0 | 891 | 0.0453 | 0.9899 | | 0.1504 | 10.0 | 990 | 0.0461 | 0.9899 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2