--- base_model: klue/roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: IE_model results: [] --- # IE_model This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4341 - Accuracy: 0.9007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9432 | 1.0 | 574 | 0.5054 | 0.8537 | | 0.4765 | 2.0 | 1148 | 0.4133 | 0.8589 | | 0.4471 | 3.0 | 1722 | 0.4228 | 0.8693 | | 0.3666 | 4.0 | 2296 | 0.4627 | 0.8815 | | 0.3508 | 5.0 | 2870 | 0.3704 | 0.8833 | | 0.325 | 6.0 | 3444 | 0.3704 | 0.9024 | | 0.2662 | 7.0 | 4018 | 0.3733 | 0.9024 | | 0.226 | 8.0 | 4592 | 0.4024 | 0.8972 | | 0.1978 | 9.0 | 5166 | 0.4198 | 0.9042 | | 0.186 | 10.0 | 5740 | 0.4341 | 0.9007 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2