wenge-research commited on
Commit
00168d5
1 Parent(s): 6b6fb53

Delete zero_to_fp32.py

Browse files
Files changed (1) hide show
  1. zero_to_fp32.py +0 -578
zero_to_fp32.py DELETED
@@ -1,578 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dicts.append(torch.load(f, map_location=device))
147
-
148
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
- raise ValueError(f"{files[0]} is not a zero checkpoint")
150
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
-
153
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
- # parameters can be different from data parallelism for non-expert parameters. So we can just
155
- # use the max of the partition_count to get the dp world_size.
156
-
157
- if type(world_size) is list:
158
- world_size = max(world_size)
159
-
160
- if world_size != total_files:
161
- raise ValueError(
162
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
- )
165
-
166
- # the groups are named differently in each stage
167
- if zero_stage <= 2:
168
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
- elif zero_stage == 3:
170
- fp32_groups_key = FP32_FLAT_GROUPS
171
- else:
172
- raise ValueError(f"unknown zero stage {zero_stage}")
173
-
174
- if zero_stage <= 2:
175
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
- elif zero_stage == 3:
177
- # if there is more than one param group, there will be multiple flattened tensors - one
178
- # flattened tensor per group - for simplicity merge them into a single tensor
179
- #
180
- # XXX: could make the script more memory efficient for when there are multiple groups - it
181
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
-
183
- fp32_flat_groups = [
184
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
- ]
186
-
187
- return zero_stage, world_size, fp32_flat_groups
188
-
189
-
190
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
- """
192
- Returns fp32 state_dict reconstructed from ds checkpoint
193
-
194
- Args:
195
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
-
197
- """
198
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
-
200
- optim_files = get_optim_files(ds_checkpoint_dir)
201
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
-
204
- model_files = get_model_state_files(ds_checkpoint_dir)
205
-
206
- zero_model_states = parse_model_states(model_files)
207
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
-
209
- if zero_stage <= 2:
210
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
- elif zero_stage == 3:
212
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
-
214
-
215
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
- return
218
-
219
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
-
222
- if debug:
223
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
-
226
- wanted_params = len(frozen_param_shapes)
227
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
- print(f'Frozen params: Have {avail_numel} numels to process.')
230
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
-
232
- total_params = 0
233
- total_numel = 0
234
- for name, shape in frozen_param_shapes.items():
235
- total_params += 1
236
- unpartitioned_numel = shape.numel()
237
- total_numel += unpartitioned_numel
238
-
239
- state_dict[name] = frozen_param_fragments[name]
240
-
241
- if debug:
242
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
-
244
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
-
246
-
247
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
- param_shapes = zero_model_states[0].param_shapes
249
-
250
- # Reconstruction protocol:
251
- #
252
- # XXX: document this
253
-
254
- if debug:
255
- for i in range(world_size):
256
- for j in range(len(fp32_flat_groups[0])):
257
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
-
259
- # XXX: memory usage doubles here (zero2)
260
- num_param_groups = len(fp32_flat_groups[0])
261
- merged_single_partition_of_fp32_groups = []
262
- for i in range(num_param_groups):
263
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
- avail_numel = sum(
267
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
-
269
- if debug:
270
- wanted_params = sum([len(shapes) for shapes in param_shapes])
271
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
- # not asserting if there is a mismatch due to possible padding
273
- print(f"Have {avail_numel} numels to process.")
274
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
-
276
- # params
277
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
- # out-of-core computing solution
279
- total_numel = 0
280
- total_params = 0
281
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
- offset = 0
283
- avail_numel = full_single_fp32_vector.numel()
284
- for name, shape in shapes.items():
285
-
286
- unpartitioned_numel = shape.numel()
287
- total_numel += unpartitioned_numel
288
- total_params += 1
289
-
290
- if debug:
291
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
- offset += unpartitioned_numel
294
-
295
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
- # live optimizer object, so we are checking that the numbers are within the right range
299
- align_to = 2 * world_size
300
-
301
- def zero2_align(x):
302
- return align_to * math.ceil(x / align_to)
303
-
304
- if debug:
305
- print(f"original offset={offset}, avail_numel={avail_numel}")
306
-
307
- offset = zero2_align(offset)
308
- avail_numel = zero2_align(avail_numel)
309
-
310
- if debug:
311
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
-
313
- # Sanity check
314
- if offset != avail_numel:
315
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
-
317
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
-
319
-
320
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
- state_dict = OrderedDict()
322
-
323
- # buffers
324
- buffers = zero_model_states[0].buffers
325
- state_dict.update(buffers)
326
- if debug:
327
- print(f"added {len(buffers)} buffers")
328
-
329
- _zero2_merge_frozen_params(state_dict, zero_model_states)
330
-
331
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
-
333
- # recover shared parameters
334
- for pair in zero_model_states[0].shared_params:
335
- if pair[1] in state_dict:
336
- state_dict[pair[0]] = state_dict[pair[1]]
337
-
338
- return state_dict
339
-
340
-
341
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
- remainder = unpartitioned_numel % world_size
343
- padding_numel = (world_size - remainder) if remainder else 0
344
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
- return partitioned_numel, padding_numel
346
-
347
-
348
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
- return
351
-
352
- if debug:
353
- for i in range(world_size):
354
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
-
357
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
- wanted_params = len(frozen_param_shapes)
359
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
- print(f'Frozen params: Have {avail_numel} numels to process.')
362
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
-
364
- total_params = 0
365
- total_numel = 0
366
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
- total_params += 1
368
- unpartitioned_numel = shape.numel()
369
- total_numel += unpartitioned_numel
370
-
371
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
-
374
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
-
376
- if debug:
377
- print(
378
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
- )
380
-
381
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
-
383
-
384
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
- param_shapes = zero_model_states[0].param_shapes
386
- avail_numel = fp32_flat_groups[0].numel() * world_size
387
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
- # param, re-consolidating each param, while dealing with padding if any
389
-
390
- # merge list of dicts, preserving order
391
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
-
393
- if debug:
394
- for i in range(world_size):
395
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
-
397
- wanted_params = len(param_shapes)
398
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
- # not asserting if there is a mismatch due to possible padding
400
- avail_numel = fp32_flat_groups[0].numel() * world_size
401
- print(f"Trainable params: Have {avail_numel} numels to process.")
402
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
-
404
- # params
405
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
- # out-of-core computing solution
407
- offset = 0
408
- total_numel = 0
409
- total_params = 0
410
- for name, shape in param_shapes.items():
411
-
412
- unpartitioned_numel = shape.numel()
413
- total_numel += unpartitioned_numel
414
- total_params += 1
415
-
416
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
-
418
- if debug:
419
- print(
420
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
- )
422
-
423
- # XXX: memory usage doubles here
424
- state_dict[name] = torch.cat(
425
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
- offset += partitioned_numel
428
-
429
- offset *= world_size
430
-
431
- # Sanity check
432
- if offset != avail_numel:
433
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
-
435
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
-
437
-
438
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
- state_dict = OrderedDict()
440
-
441
- # buffers
442
- buffers = zero_model_states[0].buffers
443
- state_dict.update(buffers)
444
- if debug:
445
- print(f"added {len(buffers)} buffers")
446
-
447
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
-
449
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
-
451
- # recover shared parameters
452
- for pair in zero_model_states[0].shared_params:
453
- if pair[1] in state_dict:
454
- state_dict[pair[0]] = state_dict[pair[1]]
455
-
456
- return state_dict
457
-
458
-
459
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
- """
461
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
- via a model hub.
464
-
465
- Args:
466
- - ``checkpoint_dir``: path to the desired checkpoint folder
467
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
-
469
- Returns:
470
- - pytorch ``state_dict``
471
-
472
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
- the checkpoint.
475
-
476
- A typical usage might be ::
477
-
478
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
- # do the training and checkpoint saving
480
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
- model = model.cpu() # move to cpu
482
- model.load_state_dict(state_dict)
483
- # submit to model hub or save the model to share with others
484
-
485
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
- application. i.e. you will need to re-initialize the deepspeed engine, since
487
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
-
489
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
-
491
- """
492
- if tag is None:
493
- latest_path = os.path.join(checkpoint_dir, 'latest')
494
- if os.path.isfile(latest_path):
495
- with open(latest_path, 'r') as fd:
496
- tag = fd.read().strip()
497
- else:
498
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
-
500
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
-
502
- if not os.path.isdir(ds_checkpoint_dir):
503
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
-
505
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
-
507
-
508
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
- """
510
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
-
513
- Args:
514
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
- """
518
-
519
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
- print(f"Saving fp32 state dict to {output_file}")
521
- torch.save(state_dict, output_file)
522
-
523
-
524
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
- """
526
- 1. Put the provided model to cpu
527
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
- 3. Load it into the provided model
529
-
530
- Args:
531
- - ``model``: the model object to update
532
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
-
535
- Returns:
536
- - ``model`: modified model
537
-
538
- Make sure you have plenty of CPU memory available before you call this function. If you don't
539
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
- conveniently placed for you in the checkpoint folder.
541
-
542
- A typical usage might be ::
543
-
544
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
- # submit to model hub or save the model to share with others
547
-
548
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
-
552
- """
553
- logger.info(f"Extracting fp32 weights")
554
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
-
556
- logger.info(f"Overwriting model with fp32 weights")
557
- model = model.cpu()
558
- model.load_state_dict(state_dict, strict=False)
559
-
560
- return model
561
-
562
-
563
- if __name__ == "__main__":
564
-
565
- parser = argparse.ArgumentParser()
566
- parser.add_argument("checkpoint_dir",
567
- type=str,
568
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
- parser.add_argument(
570
- "output_file",
571
- type=str,
572
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
- args = parser.parse_args()
575
-
576
- debug = args.debug
577
-
578
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)