File size: 4,856 Bytes
cd9bf63
8927f30
7ee38f3
42fa051
 
8927f30
 
 
cd9bf63
7ee38f3
f7cec35
1cff19b
8927f30
 
0038b20
 
7ee38f3
8927f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee38f3
 
8927f30
 
 
7ee38f3
5794441
7ee38f3
8927f30
837b0fd
 
0038b20
7ee38f3
8927f30
7ee38f3
5794441
 
 
0038b20
7ee38f3
5794441
 
7ee38f3
5794441
 
 
0038b20
7ee38f3
5794441
7ee38f3
210261a
 
 
7ee38f3
5794441
7ee38f3
837b0fd
 
 
8927f30
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
datasets:
- wenbopan/Fusang-v1
- wenbopan/OpenOrca-zh-20k
language:
- zh
- en
---

![image/webp](https://cdn-uploads.huggingface.co/production/uploads/62cd3a3691d27e60db0698b0/s21sMRxRT56c5t4M15GBP.webp)

**The Faro chat model focuses on practicality and long-context modeling. It handles various downstream tasks with higher quality, delivering stable and reliable results even when inputs contain lengthy documents or complex instructions. Faro seamlessly works in both English and Chinese.**

# Faro-Yi-9B
Faro-Yi-9B is an improved [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1). Compared to Yi-9B-200K, Faro-Yi-9B has gained greater capability in various downstream tasks and long-context modeling thanks to the large-scale synthetic data in Fusang-V1.

## How to Use

Faro-Yi-9B uses chatml template. This make it easy to set up system prompt and multi-turn conversations.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="cuda"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)

messages = [
    {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
    {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt",
).to(model.device)

generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

# Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. It's like this: if you have a triangle with two sides, you can find the length of the third side by squaring the two sides and then adding them together. The square root of that sum will give you the length of the third side! It's useful for sailing and navigating, so you always know how far you've traveled. Remember, it's all about the sum of squares, me hearties!
```

## Performance

Faro-Yi-9B enhances its ability compared to Yi-9B-200K in most dimensions, especially in long-range modeling and bilingual (English, Chinese) understanding. Faro is competitive among all open-sourced models at around 9B parameters.

<details> <summary>Benchmark Results</summary>

### Fact-based Evaluation (Open LLM Leaderboard)

| **Metric**     | **MMLU**  | **GSM8K** | **HellaSwag** | **TruthfulQA** | **Arc** | **Winogrande** |
| -------------- | --------- | --------- | ------------- | -------------- | ----------- | -------------- |
| **Yi-9B-200K** | 65.73     | 50.49     | 56.72         | 33.80          | 69.25       | 71.67          |
| **Faro-Yi-9B** | **68.80** | **63.08** | **57.28**     | **40.86**      | **72.58**   | 71.11          |

### Long-context Modeling ([LongBench](https://github.com/THUDM/LongBench))

| **Name**       | **Average_zh** | **Average_en** | **Code Completion** |
|----------------|----------------|----------------|---------------------|
| **Yi-9B-200K** | 30.288         | 36.7071        | 72.2                |
| **Faro-Yi-9B** | **41.092**     | **40.9536**    | 46.0                |

<details>
<summary>Score breakdown</summary>

| **Name**       | **Few-shot Learning_en** | **Synthetic Tasks_en** | **Single-Doc QA_en** | **Multi-Doc QA_en** | **Summarization_en** | **Few-shot Learning_zh** | **Synthetic Tasks_zh** | **Single-Doc QA_zh** | **Multi-Doc QA_zh** | **Summarization_zh** |
|----------------|--------------------------|------------------------|----------------------|---------------------|----------------------|--------------------------|------------------------|----------------------|---------------------|----------------------|
| **Yi-9B-200K** | 60.6                     | 22.8                   | 30.9                 | 38.9                | 25.8                 | 46.5                     | 28.0                   | 49.6                 | 17.7                | 9.7                  |
| **Faro-Yi-9B** | **63.8**                 | **40.2**               | **36.2**             | 38.0                | **26.3**             | 30.0                     | **75.1**               | **55.6**             | **30.7**            | **14.1**             |

</details>

### Performance on Preference (MT-Bench)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd3a3691d27e60db0698b0/M0Kc64sIsbNyCCvrRk1Lv.png)

### Bilingual Ability (CMMLU & MMLU)

| **Name**       | MMLU      | **CMMLU** |
| -------------- | --------- | --------- |
| **Yi-9B-200K** | 65.73     | 71.97     |
| **Faro-Yi-9B** | **68.80** | **73.28** |

</details>