--- license: cc-by-4.0 base_model: indiejoseph/bert-base-cantonese tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-suicide-detection-hk results: [] --- # bert-suicide-detection-hk This model is a fine-tuned version of [indiejoseph/bert-base-cantonese](https://huggingface.co/indiejoseph/bert-base-cantonese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1071 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5169 | 0.0962 | 20 | 0.4365 | 0.8065 | | 0.3487 | 0.1923 | 40 | 0.3232 | 0.8602 | | 0.1785 | 0.2885 | 60 | 0.1470 | 0.9462 | | 0.192 | 0.3846 | 80 | 0.1264 | 0.9570 | | 0.0329 | 0.4808 | 100 | 0.1857 | 0.9570 | | 0.1432 | 0.5769 | 120 | 0.2023 | 0.9247 | | 0.3458 | 0.6731 | 140 | 0.1269 | 0.9677 | | 0.234 | 0.7692 | 160 | 0.1510 | 0.9462 | | 0.179 | 0.8654 | 180 | 0.1102 | 0.9677 | | 0.1873 | 0.9615 | 200 | 0.1140 | 0.9570 | | 0.1519 | 1.0577 | 220 | 0.2102 | 0.9462 | | 0.0453 | 1.1538 | 240 | 0.3150 | 0.9247 | | 0.0341 | 1.25 | 260 | 0.1401 | 0.9570 | | 0.0316 | 1.3462 | 280 | 0.1634 | 0.9677 | | 0.1082 | 1.4423 | 300 | 0.1069 | 0.9785 | | 0.0954 | 1.5385 | 320 | 0.0819 | 0.9785 | | 0.0472 | 1.6346 | 340 | 0.1686 | 0.9677 | | 0.1563 | 1.7308 | 360 | 0.0379 | 0.9785 | | 0.1812 | 1.8269 | 380 | 0.1218 | 0.9677 | | 0.1276 | 1.9231 | 400 | 0.0785 | 0.9892 | | 0.0772 | 2.0192 | 420 | 0.0788 | 0.9892 | | 0.0022 | 2.1154 | 440 | 0.1028 | 0.9570 | | 0.0011 | 2.2115 | 460 | 0.1562 | 0.9570 | | 0.076 | 2.3077 | 480 | 0.1219 | 0.9785 | | 0.0012 | 2.4038 | 500 | 0.1159 | 0.9570 | | 0.1572 | 2.5 | 520 | 0.0987 | 0.9785 | | 0.0359 | 2.5962 | 540 | 0.1208 | 0.9785 | | 0.0737 | 2.6923 | 560 | 0.0974 | 0.9785 | | 0.1555 | 2.7885 | 580 | 0.1363 | 0.9785 | | 0.0928 | 2.8846 | 600 | 0.0681 | 0.9785 | | 0.0008 | 2.9808 | 620 | 0.0611 | 0.9677 | | 0.0606 | 3.0769 | 640 | 0.0979 | 0.9785 | | 0.0693 | 3.1731 | 660 | 0.0768 | 0.9677 | | 0.0005 | 3.2692 | 680 | 0.0925 | 0.9677 | | 0.0006 | 3.3654 | 700 | 0.0922 | 0.9677 | | 0.0005 | 3.4615 | 720 | 0.0907 | 0.9677 | | 0.0004 | 3.5577 | 740 | 0.0923 | 0.9677 | | 0.056 | 3.6538 | 760 | 0.0906 | 0.9570 | | 0.0006 | 3.75 | 780 | 0.0913 | 0.9785 | | 0.056 | 3.8462 | 800 | 0.1173 | 0.9785 | | 0.0005 | 3.9423 | 820 | 0.1341 | 0.9785 | | 0.0004 | 4.0385 | 840 | 0.1199 | 0.9785 | | 0.0004 | 4.1346 | 860 | 0.1161 | 0.9785 | | 0.0003 | 4.2308 | 880 | 0.1156 | 0.9785 | | 0.0385 | 4.3269 | 900 | 0.0859 | 0.9785 | | 0.0028 | 4.4231 | 920 | 0.0961 | 0.9785 | | 0.0003 | 4.5192 | 940 | 0.1021 | 0.9785 | | 0.0014 | 4.6154 | 960 | 0.1071 | 0.9785 | | 0.0003 | 4.7115 | 980 | 0.1089 | 0.9785 | | 0.0003 | 4.8077 | 1000 | 0.1082 | 0.9785 | | 0.0576 | 4.9038 | 1020 | 0.1066 | 0.9785 | | 0.0003 | 5.0 | 1040 | 0.1071 | 0.9785 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1