metadata
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-base_sst2_dense
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.9231651376146789
t5-base_sst2_dense
This model is a fine-tuned version of t5-base on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2156
- Accuracy: 0.9232
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6905 | 0.01 | 10 | 0.7366 | 0.5080 |
0.684 | 0.02 | 20 | 0.7306 | 0.5069 |
0.7013 | 0.03 | 30 | 0.7228 | 0.5080 |
0.6954 | 0.04 | 40 | 0.7114 | 0.5046 |
0.6893 | 0.05 | 50 | 0.7026 | 0.5034 |
0.6888 | 0.06 | 60 | 0.6912 | 0.5023 |
0.6814 | 0.07 | 70 | 0.6848 | 0.5034 |
0.679 | 0.08 | 80 | 0.6745 | 0.5206 |
0.6616 | 0.09 | 90 | 0.6685 | 0.5252 |
0.6604 | 0.1 | 100 | 0.6580 | 0.5378 |
0.6524 | 0.1 | 110 | 0.6378 | 0.6525 |
0.6344 | 0.11 | 120 | 0.6128 | 0.7271 |
0.5915 | 0.12 | 130 | 0.5672 | 0.8016 |
0.562 | 0.13 | 140 | 0.4903 | 0.8578 |
0.4653 | 0.14 | 150 | 0.3825 | 0.8796 |
0.3632 | 0.15 | 160 | 0.2811 | 0.8991 |
0.2754 | 0.16 | 170 | 0.3029 | 0.8933 |
0.2298 | 0.17 | 180 | 0.3001 | 0.8991 |
0.2819 | 0.18 | 190 | 0.2636 | 0.9083 |
0.2532 | 0.19 | 200 | 0.2321 | 0.9128 |
0.2512 | 0.2 | 210 | 0.2286 | 0.9186 |
0.2149 | 0.21 | 220 | 0.2424 | 0.9128 |
0.2466 | 0.22 | 230 | 0.2505 | 0.9140 |
0.1853 | 0.23 | 240 | 0.2178 | 0.9186 |
0.2279 | 0.24 | 250 | 0.2152 | 0.9186 |
0.219 | 0.25 | 260 | 0.2188 | 0.9197 |
0.2144 | 0.26 | 270 | 0.2179 | 0.9209 |
0.1507 | 0.27 | 280 | 0.2185 | 0.9186 |
0.1801 | 0.28 | 290 | 0.2473 | 0.9243 |
0.1735 | 0.29 | 300 | 0.2402 | 0.9128 |
0.1437 | 0.29 | 310 | 0.2436 | 0.9255 |
0.2221 | 0.3 | 320 | 0.2209 | 0.9163 |
0.1611 | 0.31 | 330 | 0.2101 | 0.9232 |
0.1813 | 0.32 | 340 | 0.2291 | 0.9174 |
0.1871 | 0.33 | 350 | 0.2386 | 0.9174 |
0.2126 | 0.34 | 360 | 0.2225 | 0.9197 |
0.2023 | 0.35 | 370 | 0.2116 | 0.9232 |
0.127 | 0.36 | 380 | 0.2155 | 0.9232 |
0.2769 | 0.37 | 390 | 0.2149 | 0.9243 |
0.1457 | 0.38 | 400 | 0.2166 | 0.9232 |
0.2129 | 0.39 | 410 | 0.2271 | 0.9232 |
0.1652 | 0.4 | 420 | 0.2308 | 0.9220 |
0.1783 | 0.41 | 430 | 0.2400 | 0.9278 |
0.1305 | 0.42 | 440 | 0.2404 | 0.9232 |
0.2595 | 0.43 | 450 | 0.2389 | 0.9209 |
0.1901 | 0.44 | 460 | 0.2102 | 0.9266 |
0.1993 | 0.45 | 470 | 0.2129 | 0.9255 |
0.147 | 0.46 | 480 | 0.2208 | 0.9232 |
0.1801 | 0.47 | 490 | 0.2143 | 0.9255 |
0.1716 | 0.48 | 500 | 0.2416 | 0.9209 |
0.1281 | 0.48 | 510 | 0.2152 | 0.9232 |
0.1837 | 0.49 | 520 | 0.2112 | 0.9243 |
0.1681 | 0.5 | 530 | 0.2178 | 0.9232 |
0.1408 | 0.51 | 540 | 0.2127 | 0.9243 |
0.1229 | 0.52 | 550 | 0.3322 | 0.9278 |
0.1304 | 0.53 | 560 | 0.3586 | 0.9209 |
0.1905 | 0.54 | 570 | 0.3354 | 0.9243 |
0.147 | 0.55 | 580 | 0.3431 | 0.9278 |
0.1538 | 0.56 | 590 | 0.3444 | 0.9232 |
0.1504 | 0.57 | 600 | 0.2196 | 0.9266 |
0.1628 | 0.58 | 610 | 0.3452 | 0.9163 |
0.1387 | 0.59 | 620 | 0.3282 | 0.9278 |
0.2104 | 0.6 | 630 | 0.2132 | 0.9243 |
0.1482 | 0.61 | 640 | 0.2154 | 0.9243 |
0.217 | 0.62 | 650 | 0.3472 | 0.9197 |
0.1692 | 0.63 | 660 | 0.2063 | 0.9243 |
0.175 | 0.64 | 670 | 0.2019 | 0.9278 |
0.1473 | 0.65 | 680 | 0.1957 | 0.9266 |
0.1154 | 0.66 | 690 | 0.2020 | 0.9255 |
0.1369 | 0.67 | 700 | 0.2087 | 0.9266 |
0.1262 | 0.67 | 710 | 0.3224 | 0.9289 |
0.2111 | 0.68 | 720 | 0.3325 | 0.9243 |
0.1349 | 0.69 | 730 | 0.3285 | 0.9289 |
0.1814 | 0.7 | 740 | 0.3324 | 0.9266 |
0.1217 | 0.71 | 750 | 0.3212 | 0.9243 |
0.173 | 0.72 | 760 | 0.2176 | 0.9220 |
0.1441 | 0.73 | 770 | 0.2130 | 0.9232 |
0.1706 | 0.74 | 780 | 0.2136 | 0.9220 |
0.1411 | 0.75 | 790 | 0.2101 | 0.9220 |
0.1051 | 0.76 | 800 | 0.2078 | 0.9243 |
0.115 | 0.77 | 810 | 0.2160 | 0.9266 |
0.2031 | 0.78 | 820 | 0.2162 | 0.9209 |
0.12 | 0.79 | 830 | 0.2059 | 0.9255 |
0.176 | 0.8 | 840 | 0.2100 | 0.9255 |
0.1306 | 0.81 | 850 | 0.4307 | 0.9243 |
0.1359 | 0.82 | 860 | 0.4397 | 0.9289 |
0.1921 | 0.83 | 870 | 0.5446 | 0.9278 |
0.1772 | 0.84 | 880 | 0.5423 | 0.9266 |
0.1771 | 0.85 | 890 | 0.4273 | 0.9266 |
0.1965 | 0.86 | 900 | 0.3224 | 0.9243 |
0.1227 | 0.86 | 910 | 0.2131 | 0.9278 |
0.2046 | 0.87 | 920 | 0.3130 | 0.9278 |
0.1061 | 0.88 | 930 | 0.3180 | 0.9289 |
0.1364 | 0.89 | 940 | 0.5501 | 0.9186 |
0.1213 | 0.9 | 950 | 0.4400 | 0.9220 |
0.1611 | 0.91 | 960 | 0.4364 | 0.9255 |
0.1632 | 0.92 | 970 | 0.4475 | 0.9220 |
0.1617 | 0.93 | 980 | 0.5758 | 0.9209 |
0.1478 | 0.94 | 990 | 0.2143 | 0.9220 |
0.1314 | 0.95 | 1000 | 0.2156 | 0.9232 |
0.1814 | 0.96 | 1010 | 0.2191 | 0.9220 |
0.1669 | 0.97 | 1020 | 0.2129 | 0.9243 |
0.1206 | 0.98 | 1030 | 0.2119 | 0.9220 |
0.1852 | 0.99 | 1040 | 0.2104 | 0.9209 |
0.1381 | 1.0 | 1050 | 0.1999 | 0.9255 |
0.135 | 1.01 | 1060 | 0.2090 | 0.9243 |
0.1253 | 1.02 | 1070 | 0.4486 | 0.9209 |
0.1244 | 1.03 | 1080 | 0.4319 | 0.9197 |
0.1772 | 1.04 | 1090 | 0.4248 | 0.9243 |
0.1264 | 1.05 | 1100 | 0.3090 | 0.9289 |
0.6928 | 1.05 | 1110 | 0.3174 | 0.9278 |
0.0908 | 1.06 | 1120 | 0.4359 | 0.9266 |
0.1286 | 1.07 | 1130 | 0.4302 | 0.9312 |
0.0953 | 1.08 | 1140 | 0.5397 | 0.9289 |
0.1091 | 1.09 | 1150 | 0.5455 | 0.9255 |
0.1546 | 1.1 | 1160 | 0.4261 | 0.9300 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1