t5-base_sst2_dense / README.md
vxbrandon's picture
End of training
2687168
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-base_sst2_dense
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9231651376146789

t5-base_sst2_dense

This model is a fine-tuned version of t5-base on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2156
  • Accuracy: 0.9232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6905 0.01 10 0.7366 0.5080
0.684 0.02 20 0.7306 0.5069
0.7013 0.03 30 0.7228 0.5080
0.6954 0.04 40 0.7114 0.5046
0.6893 0.05 50 0.7026 0.5034
0.6888 0.06 60 0.6912 0.5023
0.6814 0.07 70 0.6848 0.5034
0.679 0.08 80 0.6745 0.5206
0.6616 0.09 90 0.6685 0.5252
0.6604 0.1 100 0.6580 0.5378
0.6524 0.1 110 0.6378 0.6525
0.6344 0.11 120 0.6128 0.7271
0.5915 0.12 130 0.5672 0.8016
0.562 0.13 140 0.4903 0.8578
0.4653 0.14 150 0.3825 0.8796
0.3632 0.15 160 0.2811 0.8991
0.2754 0.16 170 0.3029 0.8933
0.2298 0.17 180 0.3001 0.8991
0.2819 0.18 190 0.2636 0.9083
0.2532 0.19 200 0.2321 0.9128
0.2512 0.2 210 0.2286 0.9186
0.2149 0.21 220 0.2424 0.9128
0.2466 0.22 230 0.2505 0.9140
0.1853 0.23 240 0.2178 0.9186
0.2279 0.24 250 0.2152 0.9186
0.219 0.25 260 0.2188 0.9197
0.2144 0.26 270 0.2179 0.9209
0.1507 0.27 280 0.2185 0.9186
0.1801 0.28 290 0.2473 0.9243
0.1735 0.29 300 0.2402 0.9128
0.1437 0.29 310 0.2436 0.9255
0.2221 0.3 320 0.2209 0.9163
0.1611 0.31 330 0.2101 0.9232
0.1813 0.32 340 0.2291 0.9174
0.1871 0.33 350 0.2386 0.9174
0.2126 0.34 360 0.2225 0.9197
0.2023 0.35 370 0.2116 0.9232
0.127 0.36 380 0.2155 0.9232
0.2769 0.37 390 0.2149 0.9243
0.1457 0.38 400 0.2166 0.9232
0.2129 0.39 410 0.2271 0.9232
0.1652 0.4 420 0.2308 0.9220
0.1783 0.41 430 0.2400 0.9278
0.1305 0.42 440 0.2404 0.9232
0.2595 0.43 450 0.2389 0.9209
0.1901 0.44 460 0.2102 0.9266
0.1993 0.45 470 0.2129 0.9255
0.147 0.46 480 0.2208 0.9232
0.1801 0.47 490 0.2143 0.9255
0.1716 0.48 500 0.2416 0.9209
0.1281 0.48 510 0.2152 0.9232
0.1837 0.49 520 0.2112 0.9243
0.1681 0.5 530 0.2178 0.9232
0.1408 0.51 540 0.2127 0.9243
0.1229 0.52 550 0.3322 0.9278
0.1304 0.53 560 0.3586 0.9209
0.1905 0.54 570 0.3354 0.9243
0.147 0.55 580 0.3431 0.9278
0.1538 0.56 590 0.3444 0.9232
0.1504 0.57 600 0.2196 0.9266
0.1628 0.58 610 0.3452 0.9163
0.1387 0.59 620 0.3282 0.9278
0.2104 0.6 630 0.2132 0.9243
0.1482 0.61 640 0.2154 0.9243
0.217 0.62 650 0.3472 0.9197
0.1692 0.63 660 0.2063 0.9243
0.175 0.64 670 0.2019 0.9278
0.1473 0.65 680 0.1957 0.9266
0.1154 0.66 690 0.2020 0.9255
0.1369 0.67 700 0.2087 0.9266
0.1262 0.67 710 0.3224 0.9289
0.2111 0.68 720 0.3325 0.9243
0.1349 0.69 730 0.3285 0.9289
0.1814 0.7 740 0.3324 0.9266
0.1217 0.71 750 0.3212 0.9243
0.173 0.72 760 0.2176 0.9220
0.1441 0.73 770 0.2130 0.9232
0.1706 0.74 780 0.2136 0.9220
0.1411 0.75 790 0.2101 0.9220
0.1051 0.76 800 0.2078 0.9243
0.115 0.77 810 0.2160 0.9266
0.2031 0.78 820 0.2162 0.9209
0.12 0.79 830 0.2059 0.9255
0.176 0.8 840 0.2100 0.9255
0.1306 0.81 850 0.4307 0.9243
0.1359 0.82 860 0.4397 0.9289
0.1921 0.83 870 0.5446 0.9278
0.1772 0.84 880 0.5423 0.9266
0.1771 0.85 890 0.4273 0.9266
0.1965 0.86 900 0.3224 0.9243
0.1227 0.86 910 0.2131 0.9278
0.2046 0.87 920 0.3130 0.9278
0.1061 0.88 930 0.3180 0.9289
0.1364 0.89 940 0.5501 0.9186
0.1213 0.9 950 0.4400 0.9220
0.1611 0.91 960 0.4364 0.9255
0.1632 0.92 970 0.4475 0.9220
0.1617 0.93 980 0.5758 0.9209
0.1478 0.94 990 0.2143 0.9220
0.1314 0.95 1000 0.2156 0.9232
0.1814 0.96 1010 0.2191 0.9220
0.1669 0.97 1020 0.2129 0.9243
0.1206 0.98 1030 0.2119 0.9220
0.1852 0.99 1040 0.2104 0.9209
0.1381 1.0 1050 0.1999 0.9255
0.135 1.01 1060 0.2090 0.9243
0.1253 1.02 1070 0.4486 0.9209
0.1244 1.03 1080 0.4319 0.9197
0.1772 1.04 1090 0.4248 0.9243
0.1264 1.05 1100 0.3090 0.9289
0.6928 1.05 1110 0.3174 0.9278
0.0908 1.06 1120 0.4359 0.9266
0.1286 1.07 1130 0.4302 0.9312
0.0953 1.08 1140 0.5397 0.9289
0.1091 1.09 1150 0.5455 0.9255
0.1546 1.1 1160 0.4261 0.9300

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1