ppo-BipedalWalker-v3 / config.json
vukpetar's picture
Upload PPO BipedalWalker-v3 trained agent
67db73e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6bdbf97e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6bdbf97ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6bdbf97f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6bdbf9f050>", "_build": "<function ActorCriticPolicy._build at 0x7f6bdbf9f0e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6bdbf9f170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6bdbf9f200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6bdbf9f290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6bdbf9f320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6bdbf9f3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6bdbf9f440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6bdbfeb600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 32, "num_timesteps": 928000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652372277.0956016, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAEjROT4IQQG9CdwRP5r5Ubz/KBe/YQlxv4DEJrx0PoA/AACAP3Miiz8TOV++PinTPoBAmzsAAIA/SPCXPl/VmT5jEZ4+0JqlPoElsT55TcM+zDPhPvmHDj8Rj04/AACAP7lCqz7dSCW9RH6vPlZPmTt+DPW++v9/P9gBd77//3+/AAAAAANOiz/5Lsq+sCySPv3/f78AAAAAS46oPof3qT4tRa0+nAq2Pi31xT5klN8+X4UCP6mNIj/is2U/AACAP6cfmz6bKkY8GiSqPo1y9jvedgu/AQCAP9DED74AAIC/AAAAAG7+jj9itwg/3PISPotzKL8AAAAA63iRPl3HkD5+2JU+Rn2ePtZEqz4bFcI+B0HnPoGcFD/aOm0/AACAPzFpBz73fOq8kikDP6uiI7z/ogW/xp5SvyC8sL3Q0mA/AAAAABXJjD8AAAAA1ozkPvv/f78AAAAAAEeRPm/Lkz7hIJk+fXaiPl7hsz4FAc4+IOP4PgJMIz8Ky2E/AACAP0zfwj3bvLC7vAUPP0XKfr0drMq+01CEv+DUUL6zWUg/AACAP3PFkD8AAAAAdFYOP/3/f78AAAAAHR6YPtBKmz7YJ6E+uPqqPsyzuz59M9Q+YST8PiF7HT8VT0s/AACAPyhKXD4Ym3A8CszwPnaVD73ZKzC934Jvv7g+Fb8zW8k+AACAP9GqgT9vC4o+3HOkPv3/fz8AAAAA4mWhPt40pj6RBK8+Uxi6PtLqyj4qG+U+nVEHP79XJj+yaV8/AACAP0+gyD7aFf48aTe6PkrbyDxlknm+wh1nv4DM0L5X6uk+AACAP/iFhj8sBFu/ELRvPwEAgD8AAAAA/migPlCgnz53NqU+uUSuPpCMuz7p7M8+c63xPkdCGj+VB1w/AACAP7UNCj5zhh892tSlPqCPaT2s0b2+AwCAP3glCL4AAIC/AAAAAK5Ojz8AAAAAgKviPLc+Kr8AAIA/QkujPv8lpT6h7ao+Alm1PgPaxT49E+A+nmgFP9reJz8wb2Y/AACAPws2Pj6E7Lc8V523Pj8bXDzAOeG+GgCAP7h5Sb78/3+/AAAAABV6jj+kZMu+gI1VPXcCPj8AAAAAS9qaPmnEmz5WnKA+yESrPplSuz4ol9M+ZSv7PtYYHT/Ww1U/AACAP0wvDD52NL08nZMJPwr7STzZa9y+gK+jv0Bjar3dH3o/AACAP74tiD9k8Cs+cmVaPwEAgL8AAAAA/ZGkPmYypz5P7a0+4ES6PsfCzT7gTek+WZIJP27jKz/wGGg/AACAP9uaiT5WeLy746XrPr/0LrwOIMG+c4RWv7Tmpr7LBR0/AACAP6NEkT8AAAAAfMU4P/kVPj4AAAAAmdSUPlBblj5rnps+A5CkPj10sj5XXck+rW3vPjXMFz+7CU4/AACAP3UkgD7Rray7nMUAP8zsLLyapg2/xGZ3v+AB2b3jhlM/AACAP62zkT///38/MOYxPwEAgL8AAAAAvlyXPvx6mD7ye5w+5dOkPgbUsz6Rfsk+5gzpPnTeED83Z1o/AACAP0ON6j26P8Q8s9u2PubRyT06cdS+9EqAP9gKHr7RA4C/AAAAAA8skT8AkE+4BAR8PnYeKL8AAIA/L/mbPqS+nT7wQ6M+vDetPlT7vD4N69M+HnX1PmXsEz/LEz8/AACAP7UXcj7ckd85QZK0PsRwdL1M5128WVVnP7wZKb8ky2e/AACAP1VUjT+IAyG+br4cPwEAgD8AAAAACV+VPk8Xlz5zaZw+/IyoPkU9uj69HdM+/JD2Ppf+Fz/qtlQ/AACAP+/OWz6ooIQ9W+CmPmEiYD1sMii+8v9/PzDu1r79/3+/AAAAAIE9hD9AzHG/REFwPgEAgD8AAAAAC5eiPre9oj6JGKc+n06wPiocvj6UndU+oPv8PqsTHT9SXk0/AACAP36ZpDw/Mpo8LJKjPu0i2z3rkSW/bjsQP9Qowz4Y/H+/AAAAAANFkT8AANQ1YhMPPzEyFr8AAIA/miiXPjW/mD4t0p0+gxOoPrezuD5IedA+Op7yPl8dFz+0f04/AACAP2u6Xz5vFTC92G8MP/xGlryIPhq/EiRNv4B4uLwtpmk/AACAP6hEkT8AAAAAvgPkPvn/f78AAAAAva+NPptdjT6BrpA+0H+XPhJ5oj44t7Q+ao7SPugGAz85lU4/AACAPx4BKz6IHAo9IbKxPoSjLz3fN6O+AgCAP8AwtL4AAIC/AAAAAEmFjD/VYt2+mH17Pvz/fz8AAIA/zYydPmG/oT5Qfac+uvKwPgudvT6k4NQ+Qzn6PtmnHD8eSVk/AACAP2M6vT7lT148dsihPgpgEr0cBee9PMbyvjqgIr8AAAAAAACAPxJvgz89ZJK+FohDPwIAgD8AAAAAsHiXPmSemD5Q2po+o/GgPuXtqz6JIr8+5RHfPqDRDD+7/UQ/AACAPwbdAD5j/Vm9p4K0PhuT0bzh7lU9jg9Pvr4bD7+QkG8+AAAAAG2fiD+CUG0/73VAP/3/fz8AAAAAAk+gPl2ioj7/nag+FsC0PsJpxz70RuI+OYkEP0K9JT8hVV0/AACAP9fEYz38KLk818C+PnOzez1hRwu/AUlQP3TeKj4BAIC/AAAAAGo5kT8AAAAAwNGxPadDOb8AAIA/Dz6bPk1Cnj7mAKY+q7WzPgL5yT72Ses+XWQLP1/4Kz9CjGI/AACAP5GY0z3Jsvm87NMKP5btnrw0OMO+jTJNv1iIlL6gREs/AACAP9gbkT8AAAAAPFZvP6uqKjMAAAAAnK2SPuBNlj7c1p0+AG6oPvN4uD6awM8+PWjwPu79ET/tY0c/AACAPwy9oD2BEQI9AkqAPuHJ5DwjYgC+/P9/P1AWqr4AAIC/AAAAAOXahD/3o9y+pCLDPgAAgD8AAAAARDasPu4qrj6mKrU+dDzCPibw1j5uKfQ+d6gRP8VQMT/b8GE/AACAP/kRoj5citC81F79PltGKT3Dyye/ajhfvwA7YDwD4Xc/AAAAAPiWjj8AAAAADF11PphrL78AAAAAtmeSPuQGkj41BZU+DLabPuJvpj7jzbg+Y4HZPjSUCD8oJT0/AACAPzpsgj5yZzo9VoeTPoVHLj093Aq+O/qNPxxU677//3+/AAAAAAcieT9M++q+XmXvPgAAgD8AAAAA/c2mPu+yqD75Oq0+6UK0PspgwT5ndtY+Lnv3PgKSGT8E6lg/AACAP3w4ej6WGba8OIunPgxTiz0P5ym+UQcZv0C75r6UVBQ/AACAP5ZEkT8AAAAAZIlNP41wsT8AAAAAByuTPg74kT6dlJY+dsKfPkIQrD7NiL4+2tDbPqa/CT8m/0A/AACAP02Llz5AJd88Ot2zPvdtjD1RsSi/WMF/P4BUG708CoC/AAAAAJkikT8AIIk3APgQPONpK78AAIA/2OyPPuWSjz4sjZI+L+OZPi5dpj5DRrs+MWPcPsUoDj8mc08/AACAP98hij3JjVk9oki7PqwhvjxC74K+BgCAP4jFi74BAIC/AAAAAPI5kD8AAAAAgAdVvAEAgL8AAAAAZcaiPk4tqD4YhrE++6+9PpR30D5YeO0+aGkMP8PdKz+5yWM/AACAP/VBcj6qpq879tS6Pr2FgjwV+GK+/Ew4v1Q+xb6gsPU+AACAPznHhz86JIk8BNp/P/3/fz8AAAAAs+WmPrwsqT5wGK8+XrG5PmVeyj7Co+M+QZEFP8PFIT/YH1g/AACAP5zrFj74IFA9gZy+PlwI27z5IDc9jPSzvuL1Kb9V4Zu4AACAP0oTkT8AALA0AMu0vPOKSr8AAIA/fdqdPkLnoT4u5qg+nRS0PlI+wz4Gztc+XFn7PmB3FD/IhDw/AACAPxi+kT6SyUe91+bfPt+Ckzz2quy+yxBwv1Sujr4SVoA/AACAP9tEhT82BoA/doQoP6uUDr8AAAAAkOqTPhM9lj7FPZw+KcKmPh36tj6Q4c8+15D2PkE7Gj+0CVg/AACAP0KYbD7Itj+9/0L8PrrVhbvrwjy/wiHLvpj1xj2HuSs/AAAAAMnjkD8AAAAA8tuPPuVs9b4AAAAAEeiRPitQlT7Cipw+eDKnPjEKtz7Uks0+NLnyPnGRFz+P6ks/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.08249600000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpdqn47F3cUCUhpRSlIwBbJRN7QSMAXSUR0ClTFvRqoIfdX2UKGgGaAloD0MIkbjH0oeWVECUhpRSlGgVTZMDaBZHQKVPHdmg8KZ1fZQoaAZoCWgPQwgJpS+EnGVxQJSGlFKUaBVNCgVoFkdApU/lrGipN3V9lChoBmgJaA9DCIl46/ybjXFAlIaUUpRoFU38BGgWR0ClT++JpFkQdX2UKGgGaAloD0MI1o13RwaYcUCUhpRSlGgVTfIEaBZHQKVR3mr8zhx1fZQoaAZoCWgPQwgOLbKdb1FxQJSGlFKUaBVNGgVoFkdApVRH9Nvfj3V9lChoBmgJaA9DCBLaci4FTXFAlIaUUpRoFU0eBWgWR0ClVhgrQPZqdX2UKGgGaAloD0MIG0ZB8PhrcUCUhpRSlGgVTQkFaBZHQKVWMFDfFaV1fZQoaAZoCWgPQwjXFp6Xip1xQJSGlFKUaBVN5wRoFkdApaGF4FA3UHV9lChoBmgJaA9DCPz9YrZkkXFAlIaUUpRoFU34BGgWR0Cloc7DMvAXdX2UKGgGaAloD0MImQ8IdGZPcUCUhpRSlGgVTT0FaBZHQKWiF2GqPwN1fZQoaAZoCWgPQwiGN2vw/nFxQJSGlFKUaBVN5QRoFkdApaIvf4yoGnV9lChoBmgJaA9DCFw5e2e0XXFAlIaUUpRoFU0ZBWgWR0ClopUTL4etdX2UKGgGaAloD0MIclDCTNtZVkCUhpRSlGgVTb0DaBZHQKWjHEpiI+J1fZQoaAZoCWgPQwh9dVWg1h1xQJSGlFKUaBVNIgVoFkdApaS9Rm9QGnV9lChoBmgJaA9DCPVjk/wID3FAlIaUUpRoFU1wBWgWR0Clpd/qgRK6dX2UKGgGaAloD0MIrn5skt+OcUCUhpRSlGgVTf0EaBZHQKWmavyLAHp1fZQoaAZoCWgPQwjsTnee+FtxQJSGlFKUaBVNIAVoFkdApagZEpiI+HV9lChoBmgJaA9DCN0MN+CzVnFAlIaUUpRoFU0wBWgWR0ClqNoTfzjFdX2UKGgGaAloD0MIXqCkwEI9cUCUhpRSlGgVTSIFaBZHQKWravRqoIh1fZQoaAZoCWgPQwhBg02dR25xQJSGlFKUaBVNFgVoFkdApa1z1ZkkKXV9lChoBmgJaA9DCFUyAFSxanFAlIaUUpRoFU0PBWgWR0ClreSULUkOdX2UKGgGaAloD0MIlQwAVRxqcUCUhpRSlGgVTQgFaBZHQKWuBCAMDwJ1fZQoaAZoCWgPQwgWokPgSGpxQJSGlFKUaBVNEAVoFkdApa9Ta4+bE3V9lChoBmgJaA9DCDIBv0ZSWXFAlIaUUpRoFU0vBWgWR0CmAYQjdHlPdX2UKGgGaAloD0MIx0s3iQGLcUCUhpRSlGgVTdgEaBZHQKYBvc1wYLt1fZQoaAZoCWgPQwgdke9S6pZxQJSGlFKUaBVN+gRoFkdApgNrRIBikXV9lChoBmgJaA9DCB79L9ei0FfAlIaUUpRoFUuMaBZHQKYFgsbNr0t1fZQoaAZoCWgPQwgsZK4MqklxQJSGlFKUaBVNMwVoFkdApgXiPS2H+XV9lChoBmgJaA9DCLyvyoUKaHFAlIaUUpRoFU0PBWgWR0CmBf/XPJJYdX2UKGgGaAloD0MIIuAQqhRFcUCUhpRSlGgVTTAFaBZHQKYGT0Qsf7t1fZQoaAZoCWgPQwgG2bJ8XYVxQJSGlFKUaBVNBwVoFkdApgk8PrfLtHV9lChoBmgJaA9DCEoMAiuHjnFAlIaUUpRoFU3xBGgWR0CmCeSt/4IsdX2UKGgGaAloD0MI1ULJ5BR6cUCUhpRSlGgVTf8EaBZHQKYMAjoIOYp1fZQoaAZoCWgPQwig/rPmh3JxQJSGlFKUaBVNCQVoFkdAplUtJtix3XV9lChoBmgJaA9DCAIoRpbMkXFAlIaUUpRoFU35BGgWR0CmVYm5c1O1dX2UKGgGaAloD0MIE0NyMnFrMECUhpRSlGgVTZECaBZHQKZW8la8pTd1fZQoaAZoCWgPQwj2fThIyEBxQJSGlFKUaBVNLAVoFkdAplb8MAmzB3V9lChoBmgJaA9DCAlvD0IAUnFAlIaUUpRoFU0rBWgWR0CmwFLhzeXSdX2UKGgGaAloD0MI7PfEOpWLcUCUhpRSlGgVTQoFaBZHQKbBxwGW2PV1fZQoaAZoCWgPQwjpuvCDc5hxQJSGlFKUaBVN4QRoFkdApsP4bS7XhHV9lChoBmgJaA9DCJqy0w9qT3FAlIaUUpRoFU0mBWgWR0CmxICyQgcMdX2UKGgGaAloD0MIRDUlWQdNcUCUhpRSlGgVTTAFaBZHQKbE596Tnq51fZQoaAZoCWgPQwhNo8nFGIVxQJSGlFKUaBVN7gRoFkdApsVXTy8SPHV9lChoBmgJaA9DCNXt7CtPVXFAlIaUUpRoFU0tBWgWR0CmxbcVYZEVdX2UKGgGaAloD0MI+OKL9rh2cUCUhpRSlGgVTRsFaBZHQKbFztmcvuh1fZQoaAZoCWgPQwhiga/o1mBxQJSGlFKUaBVNLgVoFkdApsYLollbvHV9lChoBmgJaA9DCHL8UGnEFHFAlIaUUpRoFU1IBWgWR0Cmx4hbfP5YdX2UKGgGaAloD0MIGXPXEjJvcUCUhpRSlGgVTQcFaBZHQKbHv26ClJp1fZQoaAZoCWgPQwhntcAeE61XwJSGlFKUaBVLgmgWR0Cmx+B6a9bpdX2UKGgGaAloD0MIkZp2Mc1wcUCUhpRSlGgVTQUFaBZHQKbI1ZIxxkx1fZQoaAZoCWgPQwgJcHoX7zxxQJSGlFKUaBVNNwVoFkdApsrfpIMBqHV9lChoBmgJaA9DCG5sdqQ6RXFAlIaUUpRoFU0ZBWgWR0CnGuoxxkupdX2UKGgGaAloD0MIBVH3AUhkUcCUhpRSlGgVS/1oFkdApxzqW/rSmnV9lChoBmgJaA9DCGAhc2XQKnFAlIaUUpRoFU1eBWgWR0CnHb+z+m3wdX2UKGgGaAloD0MIlkBK7FofcUCUhpRSlGgVTREFaBZHQKceHm9xp+N1fZQoaAZoCWgPQwhPBkfJq5NxQJSGlFKUaBVN6gRoFkdApx9vWhAWznV9lChoBmgJaA9DCBzvjowVb3FAlIaUUpRoFU0MBWgWR0CnIASEL6UJdX2UKGgGaAloD0MIxjGSPUJ5cUCUhpRSlGgVTQEFaBZHQKchkmgrYoR1fZQoaAZoCWgPQwir7LsieHVxQJSGlFKUaBVN/wRoFkdApyQak0rK/3V9lChoBmgJaA9DCFYqqKh6g3FAlIaUUpRoFU3pBGgWR0CnJ2ml67d0dX2UKGgGaAloD0MI43FRLaJacUCUhpRSlGgVTQ8FaBZHQKco6kadc0N1fZQoaAZoCWgPQwia7+AnThlxQJSGlFKUaBVNeQVoFkdAp3qpQHiWFHV9lChoBmgJaA9DCBr7ko3HV3FAlIaUUpRoFU0vBWgWR0Cne3mZNO/MdX2UKGgGaAloD0MIlE+PbRlCcUCUhpRSlGgVTUIFaBZHQKd7t1+y7f51fZQoaAZoCWgPQwiqudxg6G5xQJSGlFKUaBVNAQVoFkdAp30skWykbnV9lChoBmgJaA9DCJ7Swfo/1HFAlIaUUpRoFU2xBGgWR0CnfaUdq+JxdX2UKGgGaAloD0MI+l+uRQtfcUCUhpRSlGgVTRwFaBZHQKd+p5oGpuN1fZQoaAZoCWgPQwiCkZc1saRxQJSGlFKUaBVN0ARoFkdAp4IahrWRR3V9lChoBmgJaA9DCF9hwf0AcnFAlIaUUpRoFU0DBWgWR0Cng0hdld1MdX2UKGgGaAloD0MIStQLPg2IcUCUhpRSlGgVTe4EaBZHQKeEh9Tgl4V1fZQoaAZoCWgPQwikw0MYv2JxQJSGlFKUaBVNAwVoFkdAp4UgdU83dnV9lChoBmgJaA9DCPfJUYAoxDfAlIaUUpRoFU2TAWgWR0CnhjJtzjm0dX2UKGgGaAloD0MIaW/whclacUCUhpRSlGgVTRMFaBZHQKeHokrPMSt1fZQoaAZoCWgPQwizsn3IW4FxQJSGlFKUaBVN+QRoFkdAp4hZuO0b+HV9lChoBmgJaA9DCJilnZrLn3FAlIaUUpRoFU3UBGgWR0Cn21U5EMLGdX2UKGgGaAloD0MIgnAFFGpKcUCUhpRSlGgVTQQFaBZHQKfb91PnB+F1fZQoaAZoCWgPQwiID+z4r3JxQJSGlFKUaBVN+gRoFkdAp9wSNlyzX3V9lChoBmgJaA9DCIVcqWdBYXFAlIaUUpRoFU3oBGgWR0Cn3Ft3OfNBdX2UKGgGaAloD0MIG2SSkTOucUCUhpRSlGgVTcAEaBZHQKfdVz6JqIt1fZQoaAZoCWgPQwh4Y0FhEDtxQJSGlFKUaBVNNgVoFkdAp97Pz19ORHV9lChoBmgJaA9DCH15AfZRdXFAlIaUUpRoFU38BGgWR0Cn3tJK8L8adX2UKGgGaAloD0MIKPIk6dp6cUCUhpRSlGgVTREFaBZHQKffpB0p3HJ1fZQoaAZoCWgPQwjiP91AQWxxQJSGlFKUaBVNDQVoFkdAp+CdI9TxXnV9lChoBmgJaA9DCAhXQKEeUnFAlIaUUpRoFU0lBWgWR0Cn40/rrxAjdX2UKGgGaAloD0MIJEOOreencUCUhpRSlGgVTdcEaBZHQKfjt/S6UaB1fZQoaAZoCWgPQwiV8loJ3YNIQJSGlFKUaBVNEgNoFkdAp+PXnGKhtnV9lChoBmgJaA9DCM4cklroRXFAlIaUUpRoFU0fBWgWR0Cn4+HLJSzgdX2UKGgGaAloD0MIuypQiwHBcUCUhpRSlGgVTcwEaBZHQKfkQnPVurJ1fZQoaAZoCWgPQwgIsMivH2FxQJSGlFKUaBVNDgVoFkdAp+aJ4SpR43V9lChoBmgJaA9DCChJ10x+eHFAlIaUUpRoFU0ABWgWR0Cn53fFaSs9dX2UKGgGaAloD0MIpgpGJXVYcUCUhpRSlGgVTTAFaBZHQKg55hrFfiR1fZQoaAZoCWgPQwgew2M/i4ZxQJSGlFKUaBVN2ARoFkdAqDths9B8hXV9lChoBmgJaA9DCLMJMCy/P3FAlIaUUpRoFU1SBWgWR0CoPI9HDrJKdX2UKGgGaAloD0MIxedOsL+mcUCUhpRSlGgVTdIEaBZHQKimILfk3jx1fZQoaAZoCWgPQwjx1vm3i3pxQJSGlFKUaBVNCAVoFkdAqKnAZjx0+3V9lChoBmgJaA9DCEdX6e56f3FAlIaUUpRoFU33BGgWR0Coqg9BKL88dX2UKGgGaAloD0MI766zIf9PcUCUhpRSlGgVTRQFaBZHQKismLKFIup1fZQoaAZoCWgPQwgVH5+QnV9xQJSGlFKUaBVNHgVoFkdAqK1Umplz2nV9lChoBmgJaA9DCNldoKTAfHFAlIaUUpRoFU0CBWgWR0CorYUDuBtldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 480, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}