--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 base_model: kssteven/ibert-roberta-base model-index: - name: baseline-ft-mrpc-IRoberta-b-unquantized results: - task: type: text-classification name: Text Classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - type: accuracy value: 0.8995098039215687 name: Accuracy - type: f1 value: 0.9266547406082289 name: F1 --- # baseline-ft-mrpc-IRoberta-b-unquantized This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5354 - Accuracy: 0.8995 - F1: 0.9267 - Combined Score: 0.9131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.1212 | 1.0 | 230 | 0.3401 | 0.8799 | 0.9136 | 0.8967 | | 0.0347 | 2.0 | 460 | 0.3085 | 0.8676 | 0.9059 | 0.8868 | | 0.0495 | 3.0 | 690 | 0.3552 | 0.8848 | 0.9174 | 0.9011 | | 0.0024 | 4.0 | 920 | 0.4960 | 0.8824 | 0.9158 | 0.8991 | | 0.0046 | 5.0 | 1150 | 0.5354 | 0.8995 | 0.9267 | 0.9131 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3