File size: 2,009 Bytes
fe2da02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1540
- Wer: 13.8083

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 2.3889        | 0.0   | 1     | 3.1044          | 49.3314 |
| 0.174         | 0.29  | 1000  | 0.2346          | 20.9796 |
| 0.1521        | 0.58  | 2000  | 0.1945          | 17.9616 |
| 0.1301        | 0.88  | 3000  | 0.1747          | 16.2713 |
| 0.0951        | 1.17  | 4000  | 0.1684          | 15.3962 |
| 0.0955        | 1.46  | 5000  | 0.1606          | 14.7689 |
| 0.096         | 1.75  | 6000  | 0.1561          | 14.3492 |
| 0.0668        | 2.04  | 7000  | 0.1554          | 14.0853 |
| 0.062         | 2.34  | 8000  | 0.1555          | 14.0599 |
| 0.0664        | 2.63  | 9000  | 0.1548          | 13.9191 |
| 0.0678        | 2.92  | 10000 | 0.1540          | 13.8083 |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3