File size: 2,234 Bytes
f0ab681 1a62e37 f0ab681 1a62e37 f0ab681 1a62e37 f0ab681 1a62e37 f0ab681 1a62e37 f0ab681 1a62e37 f0ab681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: vpingale07/distilhubert-v2-v3
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: vpingale07/distilhubert-v2-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.785
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vpingale07/distilhubert-v2-finetuned-gtzan
This model is a fine-tuned version of [vpingale07/distilhubert-v2-v3](https://huggingface.co/vpingale07/distilhubert-v2-v3) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0276
- Accuracy: 0.785
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4443 | 1.0 | 100 | 0.7764 | 0.745 |
| 0.2265 | 2.0 | 200 | 0.8049 | 0.77 |
| 0.0928 | 3.0 | 300 | 0.9190 | 0.74 |
| 0.0661 | 4.0 | 400 | 0.9776 | 0.765 |
| 0.0095 | 5.0 | 500 | 1.0018 | 0.76 |
| 0.0069 | 6.0 | 600 | 0.9838 | 0.79 |
| 0.0046 | 7.0 | 700 | 1.0447 | 0.78 |
| 0.0041 | 8.0 | 800 | 1.0276 | 0.785 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|