visheratin
commited on
Commit
•
cde656c
1
Parent(s):
d6d35ed
Update model files
Browse files- modeling_llava.py +417 -0
modeling_llava.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from transformers import PreTrainedModel
|
10 |
+
from transformers.modeling_outputs import ModelOutput
|
11 |
+
|
12 |
+
from modeling_phi import PhiForCausalLM, InferenceParams
|
13 |
+
from processing_llava import OpenCLIPImageProcessor
|
14 |
+
from configuration_llava import LlavaConfig
|
15 |
+
from open_clip import create_model
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class LlavaCausalLMOutputWithPast(ModelOutput):
|
20 |
+
loss: Optional[torch.FloatTensor] = None
|
21 |
+
logits: torch.FloatTensor = None
|
22 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
23 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
24 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
25 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
26 |
+
|
27 |
+
|
28 |
+
class LlavaMultiModalProjector(nn.Module):
|
29 |
+
def __init__(self, config: LlavaConfig):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.linear_1 = nn.Linear(
|
33 |
+
config.vision_embed_dim,
|
34 |
+
config.text_config.n_embd * config.projector_tokens_num,
|
35 |
+
bias=True,
|
36 |
+
)
|
37 |
+
self.act = nn.GELU()
|
38 |
+
self.linear_2 = nn.Linear(
|
39 |
+
config.text_config.n_embd * config.projector_tokens_num,
|
40 |
+
config.text_config.n_embd * config.projector_tokens_num,
|
41 |
+
bias=True,
|
42 |
+
)
|
43 |
+
self.projector_tokens_num = config.projector_tokens_num
|
44 |
+
|
45 |
+
def forward(self, image_features):
|
46 |
+
hidden_states = self.linear_1(image_features)
|
47 |
+
hidden_states = self.act(hidden_states)
|
48 |
+
hidden_states = self.linear_2(hidden_states)
|
49 |
+
hidden_states = hidden_states.reshape(
|
50 |
+
hidden_states.shape[0],
|
51 |
+
self.projector_tokens_num,
|
52 |
+
int(hidden_states.shape[1] / self.projector_tokens_num),
|
53 |
+
)
|
54 |
+
return hidden_states
|
55 |
+
|
56 |
+
|
57 |
+
class LlavaPreTrainedModel(PreTrainedModel):
|
58 |
+
config_class = LlavaConfig
|
59 |
+
base_model_prefix = "model"
|
60 |
+
supports_gradient_checkpointing = True
|
61 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
62 |
+
_skip_keys_device_placement = "past_key_values"
|
63 |
+
_supports_flash_attn_2 = True
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__(config)
|
67 |
+
|
68 |
+
def _init_weights(self, module):
|
69 |
+
return
|
70 |
+
|
71 |
+
@property
|
72 |
+
def _supports_sdpa(self):
|
73 |
+
"""
|
74 |
+
Retrieve language_model's attribute to check whether the model supports
|
75 |
+
SDPA or not.
|
76 |
+
"""
|
77 |
+
return self.language_model._supports_sdpa
|
78 |
+
|
79 |
+
|
80 |
+
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
81 |
+
def __init__(self, config: LlavaConfig):
|
82 |
+
super().__init__(config)
|
83 |
+
clip_model = create_model(config.vision_tower_name)
|
84 |
+
self.vision_model = clip_model.visual
|
85 |
+
|
86 |
+
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
87 |
+
self.vocab_size = config.vocab_size
|
88 |
+
self.language_model = PhiForCausalLM(config.text_config)
|
89 |
+
self.pad_token_id = (
|
90 |
+
self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
91 |
+
)
|
92 |
+
self.post_init()
|
93 |
+
|
94 |
+
def get_input_embeddings(self):
|
95 |
+
return self.language_model.get_input_embeddings()
|
96 |
+
|
97 |
+
def set_input_embeddings(self, value):
|
98 |
+
self.language_model.set_input_embeddings(value)
|
99 |
+
|
100 |
+
def get_output_embeddings(self):
|
101 |
+
return self.language_model.get_output_embeddings()
|
102 |
+
|
103 |
+
def set_output_embeddings(self, new_embeddings):
|
104 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
105 |
+
|
106 |
+
def set_decoder(self, decoder):
|
107 |
+
self.language_model.transformer = decoder
|
108 |
+
|
109 |
+
def get_decoder(self):
|
110 |
+
return self.language_model.transformer
|
111 |
+
|
112 |
+
def tie_weights(self):
|
113 |
+
return self.language_model.tie_weights()
|
114 |
+
|
115 |
+
def resize_token_embeddings(
|
116 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None
|
117 |
+
) -> nn.Embedding:
|
118 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
119 |
+
new_num_tokens, pad_to_multiple_of
|
120 |
+
)
|
121 |
+
# update vocab size
|
122 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
123 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
124 |
+
self.vocab_size = model_embeds.num_embeddings
|
125 |
+
return model_embeds
|
126 |
+
|
127 |
+
def _merge_input_ids_with_image_features(
|
128 |
+
self, image_features, inputs_embeds, input_ids, attention_mask, position_ids
|
129 |
+
):
|
130 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
131 |
+
batch_size, sequence_length = input_ids.shape
|
132 |
+
left_padding = not torch.sum(
|
133 |
+
input_ids[:, -1] == torch.tensor(self.pad_token_id)
|
134 |
+
)
|
135 |
+
# 1. Create a mask to know where special image tokens are
|
136 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
137 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
138 |
+
# Compute the maximum embed dimension
|
139 |
+
max_embed_dim = (
|
140 |
+
num_special_image_tokens.max() * (num_image_patches - 1)
|
141 |
+
) + sequence_length
|
142 |
+
batch_indices, non_image_indices = torch.where(
|
143 |
+
input_ids != self.config.image_token_index
|
144 |
+
)
|
145 |
+
|
146 |
+
# 2. Compute the positions where text should be written
|
147 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
148 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
149 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
150 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
151 |
+
new_token_positions = (
|
152 |
+
torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1)
|
153 |
+
- 1
|
154 |
+
)
|
155 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
156 |
+
if left_padding:
|
157 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
158 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
159 |
+
|
160 |
+
# 3. Create the full embedding, already padded to the maximum position
|
161 |
+
final_embedding = torch.zeros(
|
162 |
+
batch_size,
|
163 |
+
max_embed_dim,
|
164 |
+
embed_dim,
|
165 |
+
dtype=inputs_embeds.dtype,
|
166 |
+
device=inputs_embeds.device,
|
167 |
+
)
|
168 |
+
final_attention_mask = torch.zeros(
|
169 |
+
batch_size,
|
170 |
+
max_embed_dim,
|
171 |
+
dtype=attention_mask.dtype,
|
172 |
+
device=inputs_embeds.device,
|
173 |
+
)
|
174 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
175 |
+
# set the corresponding tensors into their correct target device.
|
176 |
+
target_device = inputs_embeds.device
|
177 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
178 |
+
batch_indices.to(target_device),
|
179 |
+
non_image_indices.to(target_device),
|
180 |
+
text_to_overwrite.to(target_device),
|
181 |
+
)
|
182 |
+
attention_mask = attention_mask.to(target_device)
|
183 |
+
|
184 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
185 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
186 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
187 |
+
batch_indices, non_image_indices
|
188 |
+
]
|
189 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
190 |
+
batch_indices, non_image_indices
|
191 |
+
]
|
192 |
+
|
193 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
|
194 |
+
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
|
195 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[
|
196 |
+
:, None
|
197 |
+
].to(target_device)
|
198 |
+
|
199 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
200 |
+
raise ValueError(
|
201 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
202 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
203 |
+
)
|
204 |
+
|
205 |
+
final_embedding[image_to_overwrite] = (
|
206 |
+
image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
207 |
+
)
|
208 |
+
final_attention_mask |= image_to_overwrite
|
209 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
210 |
+
(final_attention_mask == 0), 1
|
211 |
+
)
|
212 |
+
return final_embedding, final_attention_mask, position_ids
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
input_ids: torch.LongTensor = None,
|
217 |
+
pixel_values: torch.FloatTensor = None,
|
218 |
+
attention_mask: Optional[torch.Tensor] = None,
|
219 |
+
position_ids: Optional[torch.LongTensor] = None,
|
220 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
221 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
222 |
+
vision_feature_layer: Optional[int] = None,
|
223 |
+
vision_feature_select_strategy: Optional[str] = None,
|
224 |
+
labels: Optional[torch.LongTensor] = None,
|
225 |
+
use_cache: Optional[bool] = None,
|
226 |
+
output_attentions: Optional[bool] = None,
|
227 |
+
output_hidden_states: Optional[bool] = None,
|
228 |
+
return_dict: Optional[bool] = None,
|
229 |
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
230 |
+
output_attentions = (
|
231 |
+
output_attentions
|
232 |
+
if output_attentions is not None
|
233 |
+
else self.config.output_attentions
|
234 |
+
)
|
235 |
+
output_hidden_states = (
|
236 |
+
output_hidden_states
|
237 |
+
if output_hidden_states is not None
|
238 |
+
else self.config.output_hidden_states
|
239 |
+
)
|
240 |
+
return_dict = (
|
241 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
242 |
+
)
|
243 |
+
|
244 |
+
if inputs_embeds is None:
|
245 |
+
# 1. Extra the input embeddings
|
246 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
247 |
+
|
248 |
+
# 2. Merge text and images
|
249 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
250 |
+
image_outputs = self.vision_model(pixel_values)
|
251 |
+
|
252 |
+
image_features = self.multi_modal_projector(image_outputs)
|
253 |
+
(
|
254 |
+
inputs_embeds,
|
255 |
+
attention_mask,
|
256 |
+
position_ids,
|
257 |
+
) = self._merge_input_ids_with_image_features(
|
258 |
+
image_features,
|
259 |
+
inputs_embeds,
|
260 |
+
input_ids,
|
261 |
+
attention_mask,
|
262 |
+
position_ids,
|
263 |
+
)
|
264 |
+
# if labels is None:
|
265 |
+
# labels = torch.full_like(
|
266 |
+
# attention_mask, self.config.ignore_index
|
267 |
+
# ).to(torch.long)
|
268 |
+
else:
|
269 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
270 |
+
# generation with cache
|
271 |
+
if (
|
272 |
+
past_key_values is not None
|
273 |
+
and pixel_values is not None
|
274 |
+
and input_ids.shape[1] == 1
|
275 |
+
):
|
276 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
277 |
+
# that are set to 0
|
278 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
279 |
+
|
280 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
281 |
+
batch_index, non_attended_tokens = torch.where(
|
282 |
+
first_layer_past_key_value.float().sum(-2) == 0
|
283 |
+
)
|
284 |
+
|
285 |
+
# Get the target length
|
286 |
+
target_seqlen = first_layer_past_key_value.shape[-1] + 1
|
287 |
+
|
288 |
+
extended_attention_mask = torch.ones(
|
289 |
+
(
|
290 |
+
attention_mask.shape[0],
|
291 |
+
target_seqlen - attention_mask.shape[1],
|
292 |
+
),
|
293 |
+
dtype=attention_mask.dtype,
|
294 |
+
device=attention_mask.device,
|
295 |
+
)
|
296 |
+
|
297 |
+
# Zero-out the places where we don't need to attend
|
298 |
+
extended_attention_mask[batch_index, non_attended_tokens] = 0
|
299 |
+
|
300 |
+
attention_mask = torch.cat(
|
301 |
+
(attention_mask, extended_attention_mask), dim=1
|
302 |
+
)
|
303 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
304 |
+
|
305 |
+
outputs = self.language_model(
|
306 |
+
input_ids=None,
|
307 |
+
attention_mask=attention_mask,
|
308 |
+
position_ids=position_ids,
|
309 |
+
past_key_values=past_key_values,
|
310 |
+
inputs_embeds=inputs_embeds,
|
311 |
+
use_cache=use_cache,
|
312 |
+
output_attentions=output_attentions,
|
313 |
+
output_hidden_states=output_hidden_states,
|
314 |
+
return_dict=return_dict,
|
315 |
+
)
|
316 |
+
|
317 |
+
logits = outputs[0]
|
318 |
+
|
319 |
+
loss = None
|
320 |
+
if labels is not None:
|
321 |
+
# Shift so that tokens < n predict n
|
322 |
+
if attention_mask is not None:
|
323 |
+
shift_attention_mask = attention_mask[..., 1:]
|
324 |
+
shift_logits = logits[..., :-1, :][
|
325 |
+
shift_attention_mask.to(logits.device) != 0
|
326 |
+
].contiguous()
|
327 |
+
shift_labels = labels[..., 1:][
|
328 |
+
shift_attention_mask.to(labels.device) != 0
|
329 |
+
].contiguous()
|
330 |
+
else:
|
331 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
332 |
+
shift_labels = labels[..., 1:].contiguous()
|
333 |
+
# Flatten the tokens
|
334 |
+
loss_fct = nn.CrossEntropyLoss()
|
335 |
+
loss = loss_fct(
|
336 |
+
shift_logits.view(-1, shift_logits.size(-1)),
|
337 |
+
shift_labels.view(-1).to(shift_logits.device),
|
338 |
+
)
|
339 |
+
|
340 |
+
if not return_dict:
|
341 |
+
output = (logits,) + outputs[1:]
|
342 |
+
return (loss,) + output if loss is not None else output
|
343 |
+
|
344 |
+
return LlavaCausalLMOutputWithPast(
|
345 |
+
loss=loss,
|
346 |
+
logits=logits,
|
347 |
+
past_key_values=outputs.past_key_values,
|
348 |
+
hidden_states=outputs.hidden_states,
|
349 |
+
attentions=outputs.attentions,
|
350 |
+
)
|
351 |
+
|
352 |
+
def prepare_inputs_for_generation(
|
353 |
+
self,
|
354 |
+
input_ids,
|
355 |
+
past_key_values=None,
|
356 |
+
inputs_embeds=None,
|
357 |
+
pixel_values=None,
|
358 |
+
attention_mask=None,
|
359 |
+
**kwargs,
|
360 |
+
):
|
361 |
+
if past_key_values is not None:
|
362 |
+
if isinstance(past_key_values, InferenceParams):
|
363 |
+
cache_length = past_key_values.max_seqlen
|
364 |
+
past_length = past_key_values.seqlen_offset
|
365 |
+
else:
|
366 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
367 |
+
|
368 |
+
# Keep only the unprocessed tokens:
|
369 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
370 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
371 |
+
# input)
|
372 |
+
if (
|
373 |
+
attention_mask is not None
|
374 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
375 |
+
):
|
376 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
377 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
378 |
+
# input_ids based on the past_length.
|
379 |
+
elif past_length < input_ids.shape[1]:
|
380 |
+
input_ids = input_ids[:, past_length:]
|
381 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
382 |
+
elif self.config.image_token_index in input_ids:
|
383 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
384 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
385 |
+
# older attention values, as their corresponding values are not part of the input.
|
386 |
+
if cache_length < past_length and attention_mask is not None:
|
387 |
+
attention_mask = attention_mask[
|
388 |
+
:, -(cache_length + input_ids.shape[1]) :
|
389 |
+
]
|
390 |
+
|
391 |
+
position_ids = kwargs.get("position_ids", None)
|
392 |
+
if attention_mask is not None and position_ids is None:
|
393 |
+
# create position_ids on the fly for batch generation
|
394 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
395 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
396 |
+
if past_key_values:
|
397 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
398 |
+
|
399 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
400 |
+
if inputs_embeds is not None and past_key_values is None:
|
401 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
402 |
+
else:
|
403 |
+
model_inputs = {"input_ids": input_ids}
|
404 |
+
|
405 |
+
model_inputs.update(
|
406 |
+
{
|
407 |
+
"position_ids": position_ids,
|
408 |
+
"past_key_values": past_key_values,
|
409 |
+
"use_cache": kwargs.get("use_cache"),
|
410 |
+
"attention_mask": attention_mask,
|
411 |
+
"pixel_values": pixel_values,
|
412 |
+
}
|
413 |
+
)
|
414 |
+
return model_inputs
|
415 |
+
|
416 |
+
def _reorder_cache(self, *args, **kwargs):
|
417 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|